2024年山東省榮成市中考數(shù)學考前沖刺試卷及答案詳解(必刷)_第1頁
2024年山東省榮成市中考數(shù)學考前沖刺試卷及答案詳解(必刷)_第2頁
2024年山東省榮成市中考數(shù)學考前沖刺試卷及答案詳解(必刷)_第3頁
2024年山東省榮成市中考數(shù)學考前沖刺試卷及答案詳解(必刷)_第4頁
2024年山東省榮成市中考數(shù)學考前沖刺試卷及答案詳解(必刷)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省榮成市中考數(shù)學考前沖刺試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、關于的方程有兩個不相等的實根、,若,則的最大值是(

)A.1 B. C. D.22、已知△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或163、關于x的一元二次方程根的情況,下列說法正確的是(

)A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.無法確定4、下列各式中表示二次函數(shù)的是()A.y=x2+ B.y=2﹣x2C.y= D.y=(x﹣1)2﹣x25、在同一坐標系中,二次函數(shù)與一次函數(shù)的圖像可能是(

)A. B.C. D.二、多選題(5小題,每小題3分,共計15分)1、下列方程中,關于x的一元二次方程有(

)A.x2=0 B.a(chǎn)x2+bx+c=0 C.x2-3=x D.a(chǎn)2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-92、已知關于的方程,下列說法不正確的是(

)A.當時,方程無解 B.當時,方程有兩個相等的實數(shù)根C.當時,方程有兩個相等的實數(shù)根 D.當時,方程有兩個不相等的實數(shù)根3、如圖,AB為的直徑,,BC交于點D,AC交于點E,.下列結論正確的是(

)A. B.C. D.劣弧是劣弧的2倍4、關于x的一元二次方程(k-1)x2+4x+k-1=0有兩個相等的實數(shù)根,則k的值為(

)A.1 B.0 C.3 D.-35、以圖①(以點O為圓心,半徑為1的半圓)作為“基本圖形”,分別經(jīng)歷如下變換能得到圖②的有(

)A.只要向右平移1個單位 B.先以直線為對稱軸進行翻折,再向右平移1個單位C.先繞著點O旋轉,再向右平移1個單位 D.繞著的中點旋轉即可第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、若代數(shù)式有意義,則x的取值范圍是_____.2、如圖,在平面直角坐標系中,坐標原點為O,拋物線y=a(x﹣2)2+1(a>0)的頂點為A,過點A作y軸的平行線交拋物線于點B,連接AO、BO,則△AOB的面積為________.3、《九章算術》是我國古代的數(shù)學名著,其中“勾股”章有一題,大意是說:已知矩形門的高比寬多尺,門的對角線長尺,那么門的高和寬各是多少?如果設門的寬為尺,根據(jù)題意,那么可列方程___________.4、將拋物線向上平移()個單位長度,<k<,平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),則下列結論正確的是__________.(寫出所有正確結論的序號)①0<p<1-;

②1-<p<1;

③q<n;

④q>2k-k.5、中國“一帶一路”倡議給沿線國家?guī)砗艽蟮慕?jīng)濟效益.若沿線某地區(qū)居民2017年人均收入300美元,預計2019年人均收入將達到432美元,則2017年到2019年該地區(qū)居民年人均收入增長率為______________.四、解答題(6小題,每小題10分,共計60分)1、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=02、已知關于x的一元二次方程x2+x?m=0.(1)設方程的兩根分別是x1,x2,若滿足x1+x2=x1?x2,求m的值.(2)二次函數(shù)y=x2+x?m的部分圖象如圖所示,求m的值.3、如圖,AB是的直徑,弦于點E.若,,求弦CD.4、小明和小麗先后從A地出發(fā)同一直道去B地,設小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達式,與x之間的函數(shù)表達式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達B地這段時間內,兩人何時相距最近?最近距離是多少?5、已知x1,x2是關于x的一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根.(1)若這個方程有一個根為-1,求m的值;(2)若這個方程的一個根大于-1,另一個根小于-1,求m的取值范圍;(3)已知Rt△ABC的一邊長為7,x1,x2恰好是此三角形的另外兩邊的邊長,求m的值.6、已知拋物線過點.(1)求拋物線的解析式;(2)點A在直線上且在第一象限內,過A作軸于B,以為斜邊在其左側作等腰直角.①若A與Q重合,求C到拋物線對稱軸的距離;②若C落在拋物線上,求C的坐標.-參考答案-一、單選題1、D【解析】【分析】根據(jù)一元二次方程根與系數(shù)的關系,求得兩根之和和兩根之積,再根據(jù)兩根關系,求得系數(shù)的關系,代入代數(shù)式,配方法化簡求值即可.【詳解】解:由方程有兩個不相等的實根、可得,,,∵,可得,,即化簡得則故最大值為故選D【考點】此題考查了一元二次方程根與系數(shù)的關系,涉及了配方法求解代數(shù)式的最大值,根據(jù)一元二次方程根與系數(shù)的關系得到系數(shù)的關系是解題的關鍵.2、D【解析】【分析】由△ABC為等腰三角形,BC=6,且AB,AC為方程x2﹣8x+m=0兩根,可得兩種情況:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此時方程的判別式為0,分別求解即可.【詳解】解:∵△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此時方程的判別式為0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故選:D.【考點】本題考查了一元二次方程的判別式和等腰三角形的性質,熟練掌握知識點是解題的關鍵.3、A【解析】【分析】先計算判別式,再進行配方得到△=(k-1)2+4,然后根據(jù)非負數(shù)的性質得到△>0,再利用判別式的意義即可得到方程總有兩個不相等的實數(shù)根.【詳解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程總有兩個不相等的實數(shù)根.故選:A.【考點】本題考查的是根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.上面的結論反過來也成立.4、B【解析】【分析】利用二次函數(shù)的定義逐項判斷即可.【詳解】解:A、y=x2+,含有分式,不是二次函數(shù),故此選項錯誤;B、y=2﹣x2,是二次函數(shù),故此選項正確;C、y=,含有分式,不是二次函數(shù),故此選項錯誤;D、y=(x﹣1)2﹣x2=﹣2x+1,是一次函數(shù),故此選項錯誤.故選:B.【考點】本題考查了二次函數(shù)的概念,屬于應知應會題型,熟知二次函數(shù)的定義是解題關鍵.5、C【解析】【分析】直線與拋物線聯(lián)立解方程組,若有解,則圖象有交點,若無解,則圖象無交點;根據(jù)二次函數(shù)的對稱軸在y左側,a,b同號,對稱軸在y軸右側a,b異號,以及當a大于0時開口向上,當a小于0時開口向下,來分析二次函數(shù);同時在假定二次函數(shù)圖象正確的前提下,根據(jù)一次函數(shù)的一次項系數(shù)為正,圖象從左向右逐漸上升,一次項系數(shù)為負,圖象從左向右逐漸下降;一次函數(shù)的常數(shù)項為正,交y軸于正半軸,常數(shù)項為負,交y軸于負半軸.如此分析下來,二次函數(shù)與一次函數(shù)無矛盾者為正確答案.【詳解】解:由方程組得ax2=?a,∵a≠0∴x2=?1,該方程無實數(shù)根,故二次函數(shù)與一次函數(shù)圖象無交點,排除B.A:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側,則b<0;但是一次函數(shù)b為一次項系數(shù),圖象顯示從左向右上升,b>0,兩者矛盾,故A錯;C:二次函數(shù)開口向上,說明a>0,對稱軸在y軸右側,則b<0;b為一次函數(shù)的一次項系數(shù),圖象顯示從左向右下降,b<0,兩者相符,故C正確;D:二次函數(shù)的圖象應過原點,此選項不符,故D錯.故選C.【考點】本題考查的是同一坐標系中二次函數(shù)與一次函數(shù)的圖象問題,必須明確二次函數(shù)的開口方向與a的正負的關系,a,b的符號與對稱軸的位置關系,并結合一次函數(shù)的相關性質進行分析,本題中等難度偏上.二、多選題1、AC【解析】【分析】根據(jù)一元二次方程的定義逐個判斷即可.【詳解】解:A.x2=0,C.x2-3=x符合一元二次方程的定義;B.ax2+bx+c=0中,當a=0時,不是一元二次方程;D.a2+a-x=0是關于x的一元一次方程;E.(m-1)x2+4x+=0,當m=1時為關于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是無理方程;H.(x+1)2=x2-9展開后為x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故選AC.【考點】本題考查了一元二次方程的定義,一元二次方程具有以下三個特點:(1)只含有一個未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)是整式方程.2、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數(shù)解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數(shù)根,故此選項正確,不符合題意;D當時,根據(jù)A選項,若k=0,此時方程有一個實數(shù)根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.3、ABD【解析】【分析】根據(jù)圓周角定理,等邊對等角,等腰三角形的性質,直徑所對圓周角是直角等知識即可解答【詳解】如圖,連接,,∵是的直徑,∴,又∵中,,∴點D是的中點,即,故選項正確;由選項可知是的平分線,∴,由圓周角定理知,,故選項正確;∵是的直徑,∴,∵,∴,∴,∵,∴,∴,即,∴,故選項錯誤;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故選項正確.綜上所述,正確的結論是:.故選:【考點】本題考查了圓周角定理,等邊對等角,等腰直角三角形的判定和性質,直徑所對圓周角是直角等知識,解題關鍵是求出相應角的度數(shù)4、C【解析】【分析】由方程有兩個相等的實數(shù)根,根據(jù)根的判別式可得到關于k的方程,則可求得k的值.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有兩個相等的實數(shù)根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故選C.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.5、BCD【解析】【分析】觀察兩個半圓的位置關系,再確定能否通過圖象變換得到,以及旋轉、平移的方法.【詳解】解:由圖可知,圖(1)先以直線AB為對稱軸進行翻折,再向右平移1個單位,或先繞著點O旋轉180°,再向右平移1個單位,或繞著OB的中點旋轉180°即可得到圖(2)故選BCD【考點】本題考查了旋轉、軸對稱、平移的性質.關鍵是根據(jù)變換圖形的位置關系,確定變換規(guī)律.三、填空題1、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質,被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負數(shù).注意:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義;當二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.2、【解析】【分析】先求得頂點A的坐標,然后根據(jù)題意得出B的橫坐標,把橫坐標代入拋物線,得出B點坐標,從而求得A、B間的距離,最后計算面積即可.【詳解】設AB交x軸于C∵拋物線線y=a(x﹣2)2+1(a>0)的頂點為A,∴A(2,1),∵過點A作y軸的平行線交拋物線于點B,∴B的橫坐標為2,OC=2把x=2代入得y=-3,∴B(2,-3),∴AB=1+3=4,.故答案為:4.【考點】本題考查了二次函數(shù)圖象上點的坐標特征,求得A、B的坐標是解題的關鍵.3、或【解析】【分析】設門的寬為x尺,則門的高為(x+6)尺,利用勾股定理,即可得出關于x的一元二次方程,此題得解.【詳解】解:設門的寬為x尺,則門的高為(x+6)尺,依題意得:即或.故答案為:或.【考點】本題考查了由實際問題抽象出一元二次方程以及勾股定理的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.4、②④##④②【解析】【分析】先畫出函數(shù)圖像,判斷出當時拋物線和反比例函數(shù)圖象上的點的縱坐標的關系,確定拋物線右支與反比例函數(shù)圖象的交點個數(shù),再利用拋物線的對稱性與反比例函數(shù)的圖象與性質直接判斷即可.【詳解】解:∵拋物線,∴該拋物線對稱軸為,頂點坐標為(1,),將該拋物線向上平移()個單位長度,則頂點坐標為(1,),當時,反比例函數(shù)圖象上點的坐標為(1,),如圖所示,拋物線平移后的頂點縱坐標即為m,反比例函數(shù)上橫坐標為1的點的縱坐標即為s,∴m-s=,∵<k<,∴∴拋物線的右支與反比例函數(shù)圖象只有一個交點,且該交點橫坐標大于1;∵平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),∴點M為拋物線右支與反比例函數(shù)圖象的交點,∴點P為拋物線左支與反比例函數(shù)圖象的交點,由于反比例函數(shù)的圖像在第一象限內y隨x的增大而減小,且拋物線關于直線對稱∴1-<p<1;q>2k-k.∴②④正確;故答案為:②④.【考點】本題考查了拋物線與反比例函數(shù)的圖像與性質,解題關鍵是弄清楚這兩個交點分別位于拋物線的左支和右支上,再利用拋物線的軸對稱性和反比例函數(shù)圖像的增減性進行判斷.5、20【解析】【分析】設該地區(qū)人均收入增長率為x,根據(jù)2017年人均收入300美元,預計2019年人均收入將達到432美元,可列方程求解.【詳解】解:設該地區(qū)人均收入增長率為x,則300×(1+x)2=432,∴(1+x)2=1.44,解得x=0.2(x=-2.2舍),∴該地區(qū)人均收入增長率為20%.故本題答案應為:20%.【考點】一元二次方程在實際生活中的應用是本題的考點,根據(jù)題意列出方程是解題的關鍵.四、解答題1、(1)x1=7,x2=-9;(2)x1=2+,x2=2-;(3)x1=-1+,x2=-1-;(4)x1=-2,x2=4【解析】【分析】(1)方程移項后,運用直接開平方法求解即可;(2)根據(jù)配方法解一元二次方程的步驟依次計算即可;(3)根據(jù)配方法解一元二次方程的步驟依次計算即可;(4)根據(jù)因式分解法求解即可.【詳解】解:(1)(x+1)2=64x+1=±8∴x1=7,x2=-9(2)x2﹣4x=-1x2﹣4x+4=-1+4(x-2)2=3x-2=±∴x1=2+,x2=2-(3)x2+2x=2x2+2x+1=2+1(x+1)2=3x+1=±∴x1=-1+,x2=-1-(4)(x+2)(x-4)=0x+2=0或x-4=0∴x1=-2,x2=4【考點】本題考查一元二次方程的求解,選擇適合的方法是解題關鍵.2、(1)(2)【解析】【分析】(1)根據(jù)根與系數(shù)的關系求得x1+x2、x1?x2,然后代入列出方程,通過解方程來求m的值;(2)把點(1,0)代入拋物線解析式,求得m的值.(1)解:由題意得:x1+x2=-1,x1?x2=-m,∴-1=-m.∴m=1.當m=1時,x2+x-1=0,此時Δ=1+4m=1+4=5>0,符合題意.∴m=1;(2)解:圖象可知:過點(1,0),當x=1,y=0,代入y=x2+x-m,得12+1-m=0.∴m=2.【考點】本題主要考查了拋物線與x軸的交點,根與系數(shù)的關系,解題的關鍵是掌握如果x1,x2是一元二次方程ax2+bx+c=0的兩根,那么有x1+x2=-,x1x2=.3、【解析】【分析】連接OC,如圖,根據(jù)垂徑定理得到CE=DE,然后利用勾股定理計算出CE,從而得到CD的長.【詳解】解:連接OC,如圖,∵AB為直徑,弦CD⊥AB,∴CE=DE,∵AB=8,∴OA=OC=4,∴OE=OA-AE=4-1=3,在Rt△OCE中,CE=,∴CD=2CE=.【考點】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚?、(1)250;(2)當小麗出發(fā)第時,兩人相距最近,最近距離是【解析】【分析】(1)由x=0時,根據(jù)-求得結果即可;(2)求出兩人相距的函數(shù)表達式,求出最小值即可.【詳解】解(1)當x=0時,=2250,=2000∴-=2250-2000=250(m)故答案為:250(2)設小麗出發(fā)第時,兩人相距,則即其中因此,當時S有最小值,也就是說,當小麗出發(fā)第時,兩人相距最近,最近距離是【考點】此題主要考查了二次函數(shù)的性質的應用,熟練掌握二次函數(shù)的性質是解答本題的關鍵.5、(1)m的值為1或-2(2)-2<m<1(3)m=或m=【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的兩根,然后列出m的不等式組,求出m的取值范圍;(3)首先用m表示出方程的兩根,分直角△ABC的斜邊長為7或2m+3,根據(jù)勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根,這

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論