達(dá)標(biāo)測(cè)試滬科版9年級(jí)下冊(cè)期末試題及答案詳解(易錯(cuò)題)_第1頁
達(dá)標(biāo)測(cè)試滬科版9年級(jí)下冊(cè)期末試題及答案詳解(易錯(cuò)題)_第2頁
達(dá)標(biāo)測(cè)試滬科版9年級(jí)下冊(cè)期末試題及答案詳解(易錯(cuò)題)_第3頁
達(dá)標(biāo)測(cè)試滬科版9年級(jí)下冊(cè)期末試題及答案詳解(易錯(cuò)題)_第4頁
達(dá)標(biāo)測(cè)試滬科版9年級(jí)下冊(cè)期末試題及答案詳解(易錯(cuò)題)_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,ABCD是正方形,△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形2、下列判斷正確的個(gè)數(shù)有()①直徑是圓中最大的弦;②長度相等的兩條弧一定是等??;③半徑相等的兩個(gè)圓是等圓;④弧分優(yōu)弧和劣??;⑤同一條弦所對(duì)的兩條弧一定是等?。瓵.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°4、如圖是下列哪個(gè)立體圖形的主視圖()A. B.C. D.5、如圖,,,,都是上的點(diǎn),,垂足為,若,則的度數(shù)為()A. B. C. D.6、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計(jì)這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6207、如圖是由5個(gè)相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.8、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、在圓內(nèi)接四邊形ABCD中,,則的度數(shù)為______.2、點(diǎn)(2,-3)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為_____.3、如圖,在Rt△ABC,∠B=90°,AB=BC=1,將△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到△MNC,那么BM=______________.4、在一個(gè)不透明的袋子里,有2個(gè)白球和2個(gè)紅球,它們只有顏色上的區(qū)別,從袋子里隨機(jī)摸出兩個(gè)球,則摸到兩個(gè)都是紅球的概率是_______.5、如圖,在ABC中,∠C=90°,AB=10,在同一平面內(nèi),點(diǎn)O到點(diǎn)A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.6、在一個(gè)不透明的盒子里裝有若干個(gè)紅球和20個(gè)白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復(fù)實(shí)驗(yàn)發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個(gè).7、皮影戲是一種以獸皮或紙板做成的人物剪影,在燈光照射下用隔亮布進(jìn)行表演的民間戲劇.表演者在幕后操縱剪影、演唱,或配以音樂,具有濃厚的鄉(xiāng)土氣息.“皮影戲”中的皮影是______(填寫“平行投影”或“中心投影”)三、解答題(7小題,每小題0分,共計(jì)0分)1、在正方形ABCD中,過點(diǎn)B作直線l,點(diǎn)E在直線l上,連接CE,DE,其中,過點(diǎn)C作于點(diǎn)F,交直線l于點(diǎn)H.(1)當(dāng)直線l在如圖①的位置時(shí)①請(qǐng)直接寫出與之間的數(shù)量關(guān)系______.②請(qǐng)直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時(shí),請(qǐng)寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過程中當(dāng)時(shí),請(qǐng)直接寫出EH的長.2、隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購物的支付方式更加多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中所給的信息解答下列問題:(1)這次活動(dòng)共調(diào)查了______人,并補(bǔ)充完整條形統(tǒng)計(jì)圖;(2)在扇形統(tǒng)計(jì)圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為______;(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種方式中選一種方式進(jìn)行支付,請(qǐng)用畫樹狀圖或列表的方法,求出兩人恰好選擇同一種支付方式的概率.3、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.4、如圖,在方格紙中,已知頂點(diǎn)在格點(diǎn)處的△ABC,請(qǐng)畫出將△ABC繞點(diǎn)C旋轉(zhuǎn)180°得到的△A'B'C'.(需寫出△A'B'C'各頂點(diǎn)的坐標(biāo)).5、對(duì)于平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個(gè)公共點(diǎn)P,則稱點(diǎn)P是圖形M和圖形N的“關(guān)聯(lián)點(diǎn)”.已知點(diǎn),,,.(1)直線l經(jīng)過點(diǎn)A,的半徑為2,在點(diǎn)A,C,D中,直線l和的“關(guān)聯(lián)點(diǎn)”是______;(2)G為線段OA中點(diǎn),Q為線段DG上一點(diǎn)(不與點(diǎn)D,G重合),若和有“關(guān)聯(lián)點(diǎn)”,求半徑r的取值范圍;(3)的圓心為點(diǎn),半徑為t,直線m過點(diǎn)A且不與x軸重合.若和直線m的“關(guān)聯(lián)點(diǎn)”在直線上,請(qǐng)直接寫出b的取值范圍.6、如圖,已知線段,點(diǎn)A在線段上,且,點(diǎn)B為線段上的一個(gè)動(dòng)點(diǎn).以A為中心順時(shí)針旋轉(zhuǎn)點(diǎn)M,以B為中心逆時(shí)針旋轉(zhuǎn)點(diǎn)N,旋轉(zhuǎn)角分別為和.若旋轉(zhuǎn)后M、N兩點(diǎn)重合成一點(diǎn)C(即構(gòu)成),設(shè).(1)的周長為_______;(2)若,求x的值.7、在一個(gè)不透明的盒子中裝有四個(gè)只有顏色不同的小球,其中兩個(gè)紅球,一個(gè)黃球,一個(gè)藍(lán)球.(1)攪勻后從中任意摸出1個(gè)球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個(gè)球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個(gè)球,用列表法或樹形圖的方法,求兩次都是紅球的概率.-參考答案-一、單選題1、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握?qǐng)D形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.2、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長度相等的兩條弧一定是等??;故②不正確③半徑相等的兩個(gè)圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對(duì)的兩條弧可位于弦的兩側(cè),故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點(diǎn)睛】本題考查了圓相關(guān)概念,掌握弦與弧的關(guān)系以及相關(guān)概念是解題的關(guān)鍵.3、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點(diǎn)睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對(duì)的圓周角等于圓心角的一半.4、B【分析】根據(jù)主視圖即從物體正面觀察所得的視圖求解即可.【詳解】解:的主視圖為,故選:B.【點(diǎn)睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是掌握由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.5、B【分析】連接OC.根據(jù)確定,,進(jìn)而計(jì)算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對(duì)的圓周角和圓心角,∴.故選:B.【點(diǎn)睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應(yīng)用這些知識(shí)點(diǎn)是解題關(guān)鍵.6、C【分析】根據(jù)頻率估計(jì)概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時(shí),頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點(diǎn)睛】本題主要考查了利用頻率估計(jì)概率,概率的得出是在大量實(shí)驗(yàn)的基礎(chǔ)上得出的,不能單純的依靠幾次決定.7、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個(gè)正方形,第二層左側(cè)有1個(gè)正方形.故選:B.【點(diǎn)睛】本題考查了三視圖的知識(shí),熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.8、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設(shè)半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點(diǎn)睛】本題考查正多邊形和圓,作邊心距轉(zhuǎn)化為直角三角形的問題是解決問題的關(guān)鍵.二、填空題1、110°【分析】根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ),得∠D+∠B=180°,結(jié)合已知求解即可.【詳解】∵圓內(nèi)接四邊形對(duì)角互補(bǔ),∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形互補(bǔ)的性質(zhì),熟練掌握并運(yùn)用性質(zhì)是解題的關(guān)鍵.2、(-2,3)【分析】根據(jù)“關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)關(guān)系,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”,即可求解.【詳解】點(diǎn)(2,-3)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)是(-2,3).故答案為:

(-2,3).【點(diǎn)睛】本題主要考查點(diǎn)關(guān)于原點(diǎn)對(duì)稱,解決本題的關(guān)鍵是要熟練掌握關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)的關(guān)系.3、【分析】設(shè)BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,先證明△EMC≌△FMA得ME=MF,從而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分別求出BD和DM,即可得到答案.【詳解】解:設(shè)BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,如圖:∵△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,∴∠ACM=60°,CA=CM,∴△ACM是等邊三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵M(jìn)F⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案為:.【點(diǎn)睛】本題考查等腰三角形性質(zhì)、等邊三角形的性質(zhì)及判定,解題的關(guān)鍵是證明∠CDB=90°.4、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個(gè)都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球?yàn)?,白球?yàn)椋斜淼茫骸咭还灿?2種情況,摸到兩個(gè)都是紅球有2種,∴P(兩個(gè)球都是紅球),故答案是.【點(diǎn)睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.5、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點(diǎn)到點(diǎn)A,B,C的距離相等,如下圖:,,故答案是:5.【點(diǎn)睛】本題考查了直角三角形的外接圓的外心,解題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.6、30【分析】設(shè)袋中紅球有x個(gè),根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個(gè),根據(jù)題意,得:,解并檢驗(yàn)得:x=30.所以袋中紅球有30個(gè).故答案為:30.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,解決本題的關(guān)鍵是用頻率的集中趨勢(shì)來估計(jì)概率,這個(gè)固定的近似值7、中心投影【分析】根據(jù)平行投影和中心投影的定義解答即可.【詳解】解:“皮影戲”中的皮影是中心投影.故答案是中心投影.【點(diǎn)睛】本題主要考查了平行投影和中心投影,中心投影是指把光由一點(diǎn)向外散射形成的投影,平行投影是在一束平行光線照射下形成的投影.三、解答題1、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點(diǎn)C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點(diǎn)C作交BE于點(diǎn)M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點(diǎn)C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過點(diǎn)C作交BE于點(diǎn)M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°,∴∠FEH=∠DEC=∠CEB=60°-15°=45°,∵CF⊥DE,∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,∴EF=HF=1,∴HE=,當(dāng)∠ABE=90°+15°=105°,∵BC=CE,∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB=150°,∴∠DCE=360°-∠DCB-∠BCE=120°,∵CE=BC=CD,CH⊥DE,∴∠FCE=,∴∠FEC=180°-∠CFE-∠FCE=30°,∴CF=,∴EF=,∵∠HEF=∠CEB+∠CEF=15°+30°=45°,∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,∴FH=FE,∴EH=,∴或.【點(diǎn)睛】本題考查正方形性質(zhì),圖形旋轉(zhuǎn)性質(zhì),勾股定理,等邊三角形,等腰直角三角形性質(zhì),角平分線,線段和差,掌握正方形性質(zhì),圖形旋轉(zhuǎn)性質(zhì),勾股定理,等邊三角形,等腰直角三角形性質(zhì),角平分線,線段和差是解題關(guān)鍵.2、(1)200;補(bǔ)圖見解析;(2)81°;(3)【分析】(1)根據(jù)使用支付方式為銀行卡的占比為15%,人數(shù)為30人即可求得總?cè)藬?shù),根據(jù)微信支付所占的百分比為乘以總?cè)藬?shù)即可求得,根據(jù)總?cè)藬?shù)減去微信支付,銀行卡,現(xiàn)金,其他方式支付的人數(shù)即可求得支付寶支付的人數(shù);(2)先求得支付寶支付的人數(shù)所占比乘以360°即可求得扇形圓心角的度數(shù);(3)根據(jù)列表法求概率即可.【詳解】解:(1)(人)故答案為:200其中使用微信支付的有:(人)使用支付寶支付的有:(人)(2)故答案為:81°(3)將微信記為A,支付寶記為B,銀行卡記為C,列表格如下:ABCABC共有9種等可能性的結(jié)果,其中兩人恰好選擇同一種支付方式的結(jié)果有3種,則P(兩人恰好選擇同一種支付方式)【點(diǎn)睛】本題考查了扇形統(tǒng)計(jì)圖與條形統(tǒng)計(jì)圖信息關(guān)聯(lián),求條形統(tǒng)計(jì)圖某項(xiàng)數(shù)據(jù),求扇形統(tǒng)計(jì)圖圓心角,列表法求概率,掌握以上知識(shí)是解題的關(guān)鍵.3、(1);(2)證明見詳解;(3).【分析】(1)過點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+FC′≥BC′,∴點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點(diǎn)睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點(diǎn)共圓,同弧所對(duì)圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問題,角平分線性質(zhì),分類討論思想,本題難度大,應(yīng)用知識(shí)多,是中考?jí)狠S題,利用輔助線作出正確圖形是解題關(guān)鍵.4、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點(diǎn)A,B關(guān)于點(diǎn)C中心對(duì)稱的點(diǎn)A',B',再連接A',B',C即可解題.【詳解】解:A關(guān)于點(diǎn)C中心對(duì)稱的點(diǎn)A'(-1,-3),B關(guān)于點(diǎn)C中心對(duì)稱的點(diǎn)B'(1,-1),C關(guān)于點(diǎn)C中心對(duì)稱的點(diǎn)C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點(diǎn)睛】本題考查中心對(duì)稱圖形,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.5、(1)C(2)(3)【分析】(1)作出圖形,根據(jù)切線的定義結(jié)合“關(guān)聯(lián)點(diǎn)”即可求解;(2)根據(jù)題意,為等邊三角形,則僅與相切時(shí),和有“關(guān)聯(lián)點(diǎn)”,進(jìn)而求得半徑r的取值范圍;(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論