強(qiáng)化訓(xùn)練-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【B卷】_第1頁(yè)
強(qiáng)化訓(xùn)練-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【B卷】_第2頁(yè)
強(qiáng)化訓(xùn)練-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【B卷】_第3頁(yè)
強(qiáng)化訓(xùn)練-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【B卷】_第4頁(yè)
強(qiáng)化訓(xùn)練-京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷含答案詳解【B卷】_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

京改版數(shù)學(xué)9年級(jí)上冊(cè)期末測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、反比例函數(shù)圖象的兩個(gè)分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(

)A. B.C. D.2、若關(guān)于的一元二次方程的兩根分別為,,則二次函數(shù)的對(duì)稱軸為直線(

)A. B. C. D.3、拋物線的對(duì)稱軸為直線.若關(guān)于的一元二次方程(為實(shí)數(shù))在的范圍內(nèi)有實(shí)數(shù)根,則的取值范圍是()A. B. C. D.4、如圖,正比例函數(shù)和反比例函數(shù)的圖象在第一象限交于點(diǎn)且則的值為(

)A. B. C. D.5、已知點(diǎn)都在反比例函數(shù)的圖象上,且,則下列結(jié)論一定正確的是(

)A. B. C. D.6、二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=﹣bx+c的圖象不經(jīng)過(guò)()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、多選題(7小題,每小題2分,共計(jì)14分)1、在△ABC中,∠C=90°,下列各式一定成立的是(

)A.a(chǎn)=b?cosA B.a(chǎn)=c?cosB C.c= D.a(chǎn)=b?tanA2、如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,且BD=2AD,CE=2AE,則下列結(jié)論中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE3、如圖,在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,下面等式中正確的是(

)A. B.C. D.4、如圖所示,AB為斜坡,D是斜坡AB上一點(diǎn),斜坡AB的坡度為i,坡角為,于點(diǎn)C,下面正確的有(

)A. B.C. D.5、已知拋物線(,,是常數(shù),)經(jīng)過(guò)點(diǎn),,當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.下列結(jié)論正確的是(

)A. B.C. D.關(guān)于的方程有兩個(gè)不等的實(shí)數(shù)根6、如圖,□ABCD中,E是AD延長(zhǎng)線上一點(diǎn),BE交AC于點(diǎn)F,交DC于點(diǎn)G,則下列結(jié)論中正確的是()A.△ABE∽△DGE B.△CGB∽△DGEC.△BCF∽△EAF D.△ACD∽△GCF7、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點(diǎn)為D,CD與AB的延長(zhǎng)線交于點(diǎn)C,∠A=30°,則下列結(jié)論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、二次函數(shù)的最小值為______.2、如圖1是臺(tái)灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點(diǎn),DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時(shí),最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN交于點(diǎn)F,G.若△CDE是等腰直角三角形,且點(diǎn)C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.3、比較大小:____(填“”“”或“>”)4、兩個(gè)任意大小的正方形,都可以適當(dāng)剪開,拼成一個(gè)較大的正方形,如用兩個(gè)邊長(zhǎng)分別為,的正方形拼成一個(gè)大正方形.圖中的斜邊的長(zhǎng)等于________(用,的代數(shù)式表示).5、已知點(diǎn)A(3,a)、B(-1,b)在函數(shù)的圖像上,那么a___b(填“>”或“=”或“<”)6、如圖,已知是⊙O的直徑,且,弦,點(diǎn)是弧上的點(diǎn),連接、,若,則的長(zhǎng)為______.7、如圖,在RT△ABC中,,點(diǎn)D是的中點(diǎn),過(guò)點(diǎn)D作,垂足為點(diǎn)E,連接,若,,則________.四、解答題(6小題,每小題10分,共計(jì)60分)1、已知關(guān)于的二次函數(shù).(1)求證:不論為何實(shí)數(shù),該二次函數(shù)的圖象與軸總有兩個(gè)公共點(diǎn);(2)若,兩點(diǎn)在該二次函數(shù)的圖象上,直接寫出與的大小關(guān)系;(3)若將拋物線沿軸翻折得到新拋物線,當(dāng)時(shí),新拋物線對(duì)應(yīng)的函數(shù)有最小值3,求的值.2、如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn).(1)求的值和圖象的頂點(diǎn)坐標(biāo).

(2)點(diǎn)在該二次函數(shù)圖象上.

①當(dāng)時(shí),求的值;②若到軸的距離小于2,請(qǐng)根據(jù)圖象直接寫出的取值范圍.3、如圖,在的正三角形的網(wǎng)格中,的三個(gè)頂點(diǎn)都在格點(diǎn)上.請(qǐng)按要求畫圖和計(jì)算:①僅用無(wú)刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.4、頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過(guò)點(diǎn)C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).5、已知,且,求x,y的值.6、如圖,A,B兩點(diǎn)被池塘隔開,在AB外取一點(diǎn)C,連接AC,BC,在AC上取點(diǎn)M,使AM=3MC,作MN∥AB交BC于點(diǎn)N,量得MN=38m,求AB的長(zhǎng).-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意可得,進(jìn)而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個(gè)分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負(fù)半軸,且經(jīng)過(guò)第一、三、四象限.觀察選項(xiàng)只有D選項(xiàng)符合.故選D【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)兩根之和公式可以求出對(duì)稱軸公式.【詳解】解:∵一元二次方程ax2+bx+c=0的兩個(gè)根為?2和4,∴x1+x2=?=2.∴二次函數(shù)的對(duì)稱軸為x=?=×2=1.故選:C.【考點(diǎn)】本題考查了求二次函數(shù)的對(duì)稱軸,要求熟悉二次函數(shù)與一元二次方程的關(guān)系和兩根之和公式,并熟練運(yùn)用.3、A【解析】【分析】根據(jù)給出的對(duì)稱軸求出函數(shù)解析式為,將一元二次方程的實(shí)數(shù)根可以看做與函數(shù)的有交點(diǎn),再由的范圍確定的取值范圍即可求解;【詳解】∵的對(duì)稱軸為直線,∴,∴,∴一元二次方程的實(shí)數(shù)根可以看做與函數(shù)的有交點(diǎn),∵方程在的范圍內(nèi)有實(shí)數(shù)根,當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)在時(shí)有最小值2,∴,故選A.【考點(diǎn)】本題考查二次函數(shù)的圖象及性質(zhì);能夠?qū)⒎匠痰膶?shí)數(shù)根問(wèn)題轉(zhuǎn)化為二次函數(shù)與直線的交點(diǎn)問(wèn)題,借助數(shù)形結(jié)合解題是關(guān)鍵.4、D【解析】【分析】根據(jù)點(diǎn)在直線正比例函數(shù)上,則它的坐標(biāo)應(yīng)滿足直線的解析式,故點(diǎn)的坐標(biāo)為.再進(jìn)一步利用了勾股定理,求出點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法進(jìn)一步求解.【詳解】解:作軸于.設(shè)A點(diǎn)坐標(biāo)為,在中,即,解得(舍去)、;∴點(diǎn)坐標(biāo)為,將代入數(shù)得:.故選:.【考點(diǎn)】此題考查了正比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征和用待定系數(shù)法求函數(shù)解析式,構(gòu)造直角三角形求出點(diǎn)A坐標(biāo)是解題關(guān)鍵,構(gòu)思巧妙,難度不大.5、C【解析】【分析】根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】反比例函數(shù)中,=-2020<0,圖象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故選:C.【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<0時(shí),圖象位于二四象限是解題關(guān)鍵.6、D【解析】【分析】根據(jù)二次函數(shù)圖象的開口方向、對(duì)稱軸判斷出a、b的正負(fù)情況,再由一次函數(shù)的性質(zhì)解答.【詳解】解:由勢(shì)力的線與y軸正半軸相交可知c>0,對(duì)稱軸x=-<0,得b<0.∴所以一次函數(shù)y=﹣bx+c的圖象經(jīng)過(guò)第一、二、三象限,不經(jīng)過(guò)第四象限.故選:D.【考點(diǎn)】本題考查二次函數(shù)圖象和一次函數(shù)圖象的性質(zhì),要掌握它們的性質(zhì)才能靈活解題.二、多選題1、BCD【解析】【分析】作出圖形,然后根據(jù)三角函數(shù)的定義對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:如圖,A、a=b?tanA,故選項(xiàng)A錯(cuò)誤,不符合題意;B、a=c?cosB正確,故關(guān)系式一定成立;C、c=正確,故關(guān)系式一定成立;D、a=b?tanA正確,故關(guān)系式一定成立;故選BCD.【考點(diǎn)】本題考查銳角三角函數(shù)的定義及運(yùn)用:在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.2、ABD【解析】【分析】由已知條件易證DE∥BC,則△ABC∽△ADE,再由相似三角形的性質(zhì)即可得到問(wèn)題的選項(xiàng).【詳解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正確;∴△ABC∽△ADE,故A正確;∴DE:BC=AD:AB=1:3,故C錯(cuò)誤;∴S△ABC=9S△ADE故D正確,∴其中成立的jABD,故選ABD.【考點(diǎn)】本題考查了平行四邊形的性質(zhì)以及相似三角形的判定和性質(zhì),證明DE∥BC是解題的關(guān)鍵.3、ABD【解析】【分析】先根據(jù)同角的余角相等得出∠G=∠EFH,再根據(jù)三角函數(shù)的定義求解即可.【詳解】解:∵在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以選項(xiàng)A、B、D都是正確的,故選:ABD.【考點(diǎn)】本題利用了同角的余角相等和銳角三角函數(shù)的定義解答,屬較簡(jiǎn)單題目.4、BCD【解析】【分析】根據(jù)坡度的定義解答即可.【詳解】交于點(diǎn),交于點(diǎn),,,,,,∴BCD正確.故選:BCD.【考點(diǎn)】本題考查了解直角三角形的應(yīng)用-坡度坡角問(wèn)題,熟記坡度的定義是解題的關(guān)鍵.5、BCD【解析】【分析】根據(jù)函數(shù)與點(diǎn)的關(guān)系,一元二次方程根的判別式,不等式的性質(zhì),逐一計(jì)算判斷即可.【詳解】∵拋物線(是常數(shù),)經(jīng)過(guò)點(diǎn)(-1,-1),,當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A錯(cuò)誤;∵b=a+2,a>2,c=1,,故B正確;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正確;∵,∴△==>0,∴有兩個(gè)不等的實(shí)數(shù)根,故D正確.故選:BCD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,不等式的基本性質(zhì),熟練掌握二次函數(shù)的性質(zhì),靈活使用根的判別式,準(zhǔn)確掌握不等式的基本性質(zhì)是解題的關(guān)鍵.6、ABC【解析】【分析】本題中可利用平行四邊形ABCD中兩對(duì)邊平行的特殊條件來(lái)進(jìn)行求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDG=∠EAB,∵∠E=∠E,∴△ABE∽△DGE,故選項(xiàng)A正確;∵AE∥BC,∴∠EDC=∠BCG,∠E=∠CBG,∴△CGB∽△DGE,故選項(xiàng)B正確;∵AE∥BC,∴∠E=∠FBC,∠EAF=∠BCF,∴△BCF∽△EAF,故選項(xiàng)C正確;無(wú)法證得△ACD∽△GCF,故選:ABC.【考點(diǎn)】本題考查了相似三角形的判定定理,平行四邊形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.7、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結(jié)合在直角三角形中300所對(duì)的直角邊等于斜邊的一半,繼而得到結(jié)論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項(xiàng)D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項(xiàng)B成立;∴AB=2BC,故選項(xiàng)C成立;∴∠A=∠C,∴DA=DC,故選項(xiàng)A成立;綜上所述,故選項(xiàng)ABCD均成立,故選:ABCD.【考點(diǎn)】本題考查了圓的有關(guān)性質(zhì)的綜合應(yīng)用,在本題中借用切線的性質(zhì),求得相應(yīng)角的度數(shù)是解題的關(guān)鍵.三、填空題1、【解析】【分析】先將函數(shù)解析式化為頂點(diǎn)式,再根據(jù)函數(shù)的性質(zhì)解答.【詳解】解:,∵a=1>0,∴當(dāng)x=-2時(shí),二次函數(shù)有最小值-4,故答案為:-4.【考點(diǎn)】此題考查將二次函數(shù)一般式化為頂點(diǎn)式,函數(shù)的性質(zhì),熟練轉(zhuǎn)化函數(shù)解析式的形式及掌握確定最值的方法是解題的關(guān)鍵.2、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因?yàn)椤鰿DE是等腰直角三角形,DE=2,得點(diǎn)E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長(zhǎng),再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過(guò)F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點(diǎn)E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時(shí),即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點(diǎn)】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.3、【解析】【分析】根據(jù)三角函數(shù)的性質(zhì)得,即可比較它們的大小關(guān)系.【詳解】∵∴故答案為:<.【考點(diǎn)】本題考查了三角函數(shù)值大小比較的問(wèn)題,掌握三角函數(shù)的性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】根據(jù)題意及勾股定理可得BC2=;又因Rt△ABC的邊BC在斜邊AB上的射影為a,根據(jù)射影定理可得BC2=a?AB,由此即可解答.【詳解】根據(jù)題意及勾股定理可得:BC2=;由題意可得:Rt△ABC的邊BC在斜邊AB上的射影為a,∴BC2=a?AB,即可得AB=.故答案為.【考點(diǎn)】本題考查射影定理的知識(shí),注意掌握每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng).5、<【解析】【分析】把點(diǎn)A(3,a),B(-1,b)代入函數(shù)上求出a、b的值,再進(jìn)行比較即可.【詳解】把點(diǎn)A(3,a)代入函數(shù)可得,a=-1;把點(diǎn)B(-1,b)代入函數(shù)可得,b=3;∵3>-1,即a<b.故答案為:<.【考點(diǎn)】本題比較簡(jiǎn)單,考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),即反比例函數(shù)圖象上點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式.6、9【解析】【分析】連接OC和OE,由同弧所對(duì)的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對(duì)的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點(diǎn)】本題考查了圓周角定理及垂徑定理等相關(guān)知識(shí)點(diǎn),本題的關(guān)鍵是求出∠COB=60°.7、3【解析】【分析】根據(jù)直角三角形的性質(zhì)得到AB=10,利用勾股定理求出AC,再說(shuō)明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點(diǎn)D為AB中點(diǎn),∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點(diǎn)】本題考查了直角三角形的性質(zhì),勾股定理,平行線分線段成比例,解題的關(guān)鍵是通過(guò)平行得到比例式.四、解答題1、(1)見(jiàn)解析(2)(3)的值為1或-5【解析】【分析】(1)計(jì)算判別式的值,得到,即可判定;(2)計(jì)算二次函數(shù)的對(duì)稱軸為:直線,利用當(dāng)拋物線開口向上時(shí),誰(shuí)離對(duì)稱軸遠(yuǎn)誰(shuí)大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關(guān)系式,再利用對(duì)稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實(shí)數(shù),方程有兩個(gè)不相等的實(shí)數(shù)根∴無(wú)論為何實(shí)數(shù),該二次函數(shù)的圖象與軸總有兩個(gè)公共點(diǎn)(2)解:二次函數(shù)的對(duì)稱軸為:直線∵,拋物線開口向上∴拋物線上的點(diǎn)離對(duì)稱軸越遠(yuǎn)對(duì)應(yīng)的函數(shù)值越大∵∴M點(diǎn)到對(duì)稱軸的距離為:1N點(diǎn)到對(duì)稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對(duì)稱軸為直線①若,即,則當(dāng)時(shí),有最小值∴解得,∵∴②若,即,則當(dāng)時(shí),有最小值-1不合題意,舍去③若,,則當(dāng)時(shí),有最小值∴解得,∵∴綜上,的值為1或-5【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn)以及二次函數(shù)的最值問(wèn)題,利用一元二次方程根的判別式判斷拋物線與x軸的交點(diǎn)情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對(duì)稱軸與取值范圍的位置關(guān)系來(lái)確定二次函數(shù)的最值是解本題的關(guān)鍵.2、(1);(2)①11;②.【解析】【分析】(1)把點(diǎn)P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由點(diǎn)Q到y(tǒng)軸的距離小于2,可得-2<m<2,在此范圍內(nèi)求n即可.【詳解】(1)解:把代入,得,解得.∵,∴頂點(diǎn)坐標(biāo)為.(2)①當(dāng)m=2時(shí),n=11,②點(diǎn)Q到y(tǒng)軸的距離小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.【考點(diǎn)】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)圖象上點(diǎn)的特征是解題的關(guān)鍵.3、(1)答案見(jiàn)解析;(2).【解析】【分析】(1)利用平行四邊形的性質(zhì)分別作出AB、AC的中點(diǎn)E、F,再利用三角形重心的性質(zhì)即可作出△ABC的BC邊上的中線AD;(2)利用平行線的性質(zhì)可得∠AEC=∠FDC,再利用菱形及等邊三角形的性質(zhì)可求得DH、CH的長(zhǎng),繼而求得CD的長(zhǎng),從而求得答案.【詳解】(1)如圖,線段AD就是所求作的中線;(2)如圖:在的正三角形的網(wǎng)格中,∵M(jìn)N∥AB∥FD,∴∠AEC=∠FDC,∵四邊形CMGN為菱形,且邊長(zhǎng)為5,∴CG⊥MN,∴CG⊥FD,,∴CG=2OG=5,∵△GFD為等邊三角形,且邊長(zhǎng)為2,同理:HG=,∴在Rt△CDH中,∠CHD=90,DH=1,CH=CG-HG=4,∴,即,∴,∴.【考點(diǎn)】本題考查了作圖-應(yīng)用與設(shè)計(jì)作圖,菱形的性質(zhì)、等邊三角形的性質(zhì),平行線的性質(zhì),勾股定理的應(yīng)用.首先要理解題意,弄清問(wèn)題中對(duì)所作圖形的要求,結(jié)合對(duì)應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.4、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點(diǎn)E代入直線解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式,代入點(diǎn)B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長(zhǎng)度可表示,利用翻折推出CG=HG,列等式求解即可.【詳

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論