強(qiáng)化訓(xùn)練-湖南省耒陽市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試卷(含答案詳解)_第1頁
強(qiáng)化訓(xùn)練-湖南省耒陽市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試卷(含答案詳解)_第2頁
強(qiáng)化訓(xùn)練-湖南省耒陽市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試卷(含答案詳解)_第3頁
強(qiáng)化訓(xùn)練-湖南省耒陽市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試卷(含答案詳解)_第4頁
強(qiáng)化訓(xùn)練-湖南省耒陽市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)試卷(含答案詳解)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖南省耒陽市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,直線a,b被直線c所截,下列條件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠32、如圖所示,過點(diǎn)P畫直線a的平行線b的作法的依據(jù)是()A.兩直線平行,同位角相等 B.同位角相等,兩直線平行C.兩直線平行,內(nèi)錯角相等 D.內(nèi)錯角相等,兩直線平行3、中,它的三條角平分線的交點(diǎn)為O,若∠B=80°,則∠AOC的度數(shù)為()A.100° B.130° C.110° D.150°4、如圖,∠B+∠C+∠D+∠E―∠A等于()A.180° B.240° C.300° D.360°5、一把直尺和一塊三角板(含、角)如圖所示擺放,直尺一邊與三角板的兩直角邊分別交于點(diǎn)和點(diǎn),另一邊與三角板的兩直角邊分別交于點(diǎn)和點(diǎn),且,那么的大小為()A. B. C. D.6、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等邊三角形 B.銳角三角形 C.鈍角三角形 D.直角三角形7、如圖,直線,等邊三角形的頂點(diǎn)、分別在直線和上,邊與直線所夾的銳角為,則的度數(shù)為(

)A. B. C. D.8、如圖,將△ABC紙片沿DE折疊,點(diǎn)A的對應(yīng)點(diǎn)為A’,若∠B=60°,∠C=80°,則∠1+∠2等于(

)A.40° B.60° C.80° D.140°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應(yīng)假設(shè):______.2、如圖,DE⊥AB,∠A=25°,∠D=45°,則∠ACB的度數(shù)為_____3、如圖,下列條件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判斷直線的有_________(只填序號).4、如圖,四邊形ABCD中,點(diǎn)M,N分別在AB,BC上,將沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠B=___°.5、命題“互為相反數(shù)的兩個(gè)數(shù)的和為零”的條件是______,結(jié)論是______.6、如圖是利用直尺和三角板過已知直線l外一點(diǎn)P作直線l的平行線的方法,其理由是__________.7、將一副直角三角板如圖放置,已知,,,則________°.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,△ABC中,∠BAC=90°,點(diǎn)D是BC上的一點(diǎn),將△ABC沿AD翻折后,點(diǎn)B恰好落在線段CD上的B'處,且AB'平分∠CAD.求∠BAB'的度數(shù).2、請閱讀下列材料,并完成相應(yīng)的任務(wù):有趣的“飛鏢圖”如圖,這種形似飛鏢的四邊形,可以形象地稱它為“飛鏢圖”.當(dāng)我們仔細(xì)觀察后發(fā)現(xiàn),它實(shí)際上就是凹四邊形.那么它具有哪些性質(zhì)呢?又將怎樣應(yīng)用呢?下面我們進(jìn)行認(rèn)識與探究:凹四邊形通俗地說,就是一個(gè)角“凹”進(jìn)去的四邊形,其性質(zhì)有:凹四邊形中最大內(nèi)角外面的角等于其余三個(gè)內(nèi)角之和.(即如圖1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如圖2,連接AB,則在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又∵在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如圖3,連接CD并延長至F,∵∠1和∠3分別是△ACD和△BCD的一個(gè)外角,......大家在探究的過程中,還發(fā)現(xiàn)有很多方法可以證明這一結(jié)論,你有自己的方法嗎?任務(wù):(1)填空:“方法一”主要依據(jù)的一個(gè)數(shù)學(xué)定理是;(2)探索:根據(jù)“方法二”中輔助線的添加方式,寫出該證明過程的剩余部分;(3)應(yīng)用:如圖4,AE是∠CAD的平分線,BF是∠CBD的平分線,AE與BF交于G,若∠ADB=150°,∠AGB=110°,請你直接寫出∠C的大?。?、如圖所示,AE為△ABC的角平分線,CD為△ABC的高,若∠B=30°,∠ACB為70°.(1)求∠CAF的度數(shù);(2)求∠AFC的度數(shù).4、如圖,在△ABC中,D為AB邊上一點(diǎn),E為BC邊上一點(diǎn),∠BCD=∠BDC(1)若∠ACD=15°,∠CAD=40°,則∠B=度(直接寫出答案);(2)請說明:∠EAB+∠AEB=2∠BDC的理由.5、在△ABC中,若存在一個(gè)內(nèi)角是另外一個(gè)內(nèi)角度數(shù)的n倍(n為大于1的正整數(shù)),則稱△ABC為n倍角三角形.例如,在△ABC中,∠A=80°,∠B=60°,∠C=40°,可知∠A=2∠C,所以△ABC為2倍角三角形.(1)在△DEF中,∠E=40°,∠F=35°,則△DEF為倍角三角形;(2)如圖,直線MN⊥直線PQ于點(diǎn)O,點(diǎn)A、點(diǎn)B分別在射線OP、OM上;已知∠BAO、∠OAG的角平分線分別與∠BOQ的角平分線所在的直線交于點(diǎn)E、F;①說明∠ABO=2∠E的理由;②若△AEF為4倍角三角形,直接寫出∠ABO的度數(shù).6、已知:如圖,O是內(nèi)一點(diǎn),且OB、OC分別平分、.(1)若,求;(2)若,求;(3)若,利用第(2)題的結(jié)論求.7、如圖,AD是△ABE的角平分線,過點(diǎn)B作BC⊥AB交AD的延長線于點(diǎn)C,點(diǎn)F在AB上,連接EF交AD于點(diǎn)G.(1)若2∠1+∠EAB=180°,求證:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度數(shù).-參考答案-一、單選題1、D【解析】【分析】根據(jù)同位角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行;內(nèi)錯角相等,兩直線平行,進(jìn)行判斷即可.【詳解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故選D.【考點(diǎn)】本題主要考查了平行線的判定,熟記平行線的判定方法是解題的關(guān)鍵.解答此類要判定兩直線平行的題,可圍繞截線找同位角、內(nèi)錯角和同旁內(nèi)角.2、D【解析】【詳解】解:如圖所示,根據(jù)圖中直線a、b被c所截形成的內(nèi)錯角相等,可得依據(jù)為內(nèi)錯角相等,兩直線平行.故選D.3、B【解析】【分析】先根據(jù)角平分線的定義可得,,再根據(jù)三角形的內(nèi)角和定理可得,然后根據(jù)三角形的內(nèi)角和定理可得,由此即可得出答案.【詳解】如圖,∵AO,CO分別是,的角平分線∴,∴又∵∴∴故選:B.【考點(diǎn)】本題考查了角平分線的定義、三角形的內(nèi)角和定理等知識點(diǎn),掌握三角形的內(nèi)角和定理是解題關(guān)鍵.4、A【解析】【分析】根據(jù)三角形的外角的性質(zhì),得∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,兩式相加再減去∠A,根據(jù)三角形的內(nèi)角和是180°可求解.【詳解】∵∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,∴∠B+∠C+∠D+∠E-∠A=360°-(∠AGF+∠AFG+∠A),又∵∠AGF+∠AFG+∠A=180°,∴∠B+∠C+∠D+∠E-∠A=180°,故選A.【考點(diǎn)】本題考查了三角形外角的性質(zhì)、三角形內(nèi)角和定理,熟練掌握三角形外角的性質(zhì)以及三角形內(nèi)角和等于180度是解題的關(guān)鍵.5、B【解析】【分析】先利用三角形外角性質(zhì)得到∠FDE=∠C+∠CED=140°,然后根據(jù)平行線的性質(zhì)得到∠BFA的度數(shù).【詳解】,∵,∴.故選B.【考點(diǎn)】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.6、D【解析】【分析】由于∠A-∠C=∠B,再結(jié)合∠A+∠B+∠C=180°,易求∠A,進(jìn)而可判斷三角形的形狀.【詳解】∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故選D.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,求出∠A的度數(shù)是解題的關(guān)鍵.7、C【解析】【分析】根據(jù),可以得到,,再根據(jù)等邊三角形可以計(jì)算出的度數(shù).【詳解】解:如圖所示:根據(jù)∴,又∵是等邊三角形∴∴∴故選:C.【考點(diǎn)】本題主要考查了平行線的性質(zhì),即兩直線平行內(nèi)錯角相等以及兩直線平行同位角相等;明確平行線的性質(zhì)是解題的關(guān)鍵.8、C【解析】【分析】根據(jù)平角定義和折疊的性質(zhì),得,再利用三角形的內(nèi)角和定理進(jìn)行轉(zhuǎn)換,得從而解題.【詳解】解:根據(jù)平角的定義和折疊的性質(zhì),得.又,,,∴,故選:C【考點(diǎn)】此題綜合運(yùn)用了平角的定義、折疊的性質(zhì)和三角形的內(nèi)角和定理.二、填空題1、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點(diǎn)進(jìn)行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;

假設(shè)這兩條直線不平行,則兩條直線有交點(diǎn),因?yàn)檫^直線外一點(diǎn)有且只有一條直線與已知直線平行因此,兩條直線有交點(diǎn)時(shí),它們不可能同時(shí)與第三條直線平行因此假設(shè)與結(jié)論矛盾.故假設(shè)不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點(diǎn)】本題主要考查了反證法,在解題時(shí)要根據(jù)反證法的特點(diǎn)進(jìn)行證明是本題的關(guān)鍵.2、110°【解析】【分析】由DE與AB垂直,利用垂直的定義得到∠BED為直角,進(jìn)而確定出△BDE為直角三角形,利用直角三角形的兩銳角互余,求出∠B的度數(shù),在△ABC中,利用三角形的內(nèi)角和定理即可求出∠ACB的度數(shù).【詳解】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°-∠BED-∠D=45°,又∵∠A=25°,∵∠ACB=180°-(∠A+∠B)=110°.故答案為110°【考點(diǎn)】此題考查了三角形的外角性質(zhì),直角三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.3、①②③⑤【解析】【詳解】分析:根據(jù)平行線的判定定理對各小題進(jìn)行逐一判斷即可.詳解:①∵∠1=∠3,∴l(xiāng)1∥l2,故本小題正確;②∵,∴l(xiāng)1∥l2,故本小題正確;③∵∠4=∠5,∴l(xiāng)1∥l2,故本小題正確;④∠2=∠3不能判定l1∥l2,故本小題錯誤;⑤∵∠6=∠2+∠3,∴l(xiāng)1∥l2,故本小題正確.故答案為①②③⑤點(diǎn)睛:考查平行線的判定,掌握判定方法是解題的關(guān)鍵.4、95【解析】【詳解】∵M(jìn)F//AD,F(xiàn)N//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案為:955、

互為相反數(shù)的兩個(gè)數(shù)相加

和為零【解析】【分析】根據(jù)命題的組成,把命題寫成“如果……那么……”形式,“如果”后面的是條件,“那么”后面的是結(jié)論,就可以得到命題的條件和結(jié)論.【詳解】解:把命題“互為相反數(shù)的兩個(gè)數(shù)的和為零”寫成“如果……那么……”形式,即“如果互為相反數(shù)的兩個(gè)數(shù)相加,那么和為零”,條件:互為相反數(shù)的兩個(gè)數(shù)相加,結(jié)論:和為零.【考點(diǎn)】本題考查了命題與定理的知識點(diǎn),把命題寫成“如果……那么……”形式,了解“如果”后面的是條件,“那么”后面的是結(jié)論是解題的關(guān)鍵.6、同位角相等,兩直線平行.【解析】【詳解】利用三角板中兩個(gè)60°相等,可判定平行,故答案為:同位角相等,兩直線平行考點(diǎn):平行線的判定7、105【解析】【分析】根據(jù)平行線的性質(zhì)可得,根據(jù)三角形內(nèi)角和定理以及對頂角相等即可求解.【詳解】,,,∵∠E=60°,∴∠F=30°,故答案為:105【考點(diǎn)】本題考查了平行線的性質(zhì),三角形內(nèi)角和定理,掌握平行線的性質(zhì)是解題的關(guān)鍵.三、解答題1、60°【解析】【分析】由折疊和角平分線可求∠BAD=30°,即可求出∠BAB'的度數(shù).【詳解】解:由折疊可知,∠BAD=∠B'AD,∵AB'平分∠CAD.∴∠B'AC=∠B'AD,∴∠BAD=∠B'AC=∠B'AD,∵∠BAC=90°,∴∠BAD=∠B'AC=∠B'AD=30°,∴∠BAB'=60°.【考點(diǎn)】本題考查了折疊和角平分線,解題關(guān)鍵是掌握折疊角相等和角平分線的性質(zhì).2、(1)三角形內(nèi)角和定理(或三角形的內(nèi)角和等于180°);(2)見解析;(3)70°【解析】【分析】(1)根據(jù)三角形內(nèi)角和定理,即可求解;(2)根據(jù)三角形外角的性質(zhì)可得∠1=∠2+∠A,∠3=∠4+∠B,從而得到∠1+∠3=∠2+∠A+∠4+∠B,即可求證;(3)由(2)可得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,從而得到∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,再由AE是∠CAD的平分線,BF是∠CBD的平分線,可得150°-∠C=2(110°-∠C),即可求解.(1)解:三角形內(nèi)角和定理(或三角形的內(nèi)角和等于180°)(2)證明:連接CD并延長至F,∵∠1和∠2分別是△ACD和△BCD的一個(gè)外角,∴∠1=∠2+∠A,∠3=∠4+∠B,∴∠1+∠3=∠2+∠A+∠4+∠B,即∠ADB=∠A+∠B+∠ACB;(3)解:由(2)得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,∵∠ADB=150°,∠AGB=110°,∴∠CAD+∠CBD+∠C=150°,∠CAE+∠CBF+∠C=110°,∴∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,∵AE是∠CAD的平分線,BF是∠CBD的平分線,∴∠CAD=2∠CAE,∠CBD=2∠CBF,∴∠CAD+∠CBD=2(∠CAE+∠CBF),∴150°-∠C=2(110°-∠C),解得:∠C=70°.【考點(diǎn)】本題主要考查了三角形的內(nèi)角和定理,三角形外角的性質(zhì),有關(guān)角平分線的計(jì)算,熟練掌握三角形內(nèi)角和定理,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.3、(1)40°;(2)130°【解析】【分析】(1)依據(jù)三角形內(nèi)角和定理,即可得到∠BAC的度數(shù),再根據(jù)角平分線的定義,即可得到∠CAF的度數(shù);(2)依據(jù)三角形內(nèi)角和定理,即可得到∠ACF的度數(shù),再根據(jù)三角形內(nèi)角和定理,即可得出∠AFC的度數(shù).【詳解】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣30°﹣70°=80°,又∵AE平分∠BAC,∴∠CAF=∠CAB=×80°=40°;(2)∵CD為△ABC的高,∠CAD=80°,∴Rt△ACD中,∠ACF=90°﹣80°=10°,∴∠AFC=180°﹣∠ACF﹣∠CAF=180°﹣10°﹣40°=130°.【考點(diǎn)】本題考查了三角形的外角性質(zhì)、三角形的角平分線、中線和高、三角形內(nèi)角和定理,熟練掌握性質(zhì),靈活運(yùn)用定理是解題的關(guān)鍵.4、(1)70(2)見解析【解析】【分析】(1)利用三角形的外角性質(zhì)可求出∠BDC的度數(shù),結(jié)合∠BCD=∠BDC可得出∠BCD的度數(shù),再在△BCD中,利用三角形內(nèi)角和定理可求出∠B的度數(shù);(2)在△ABE中,利用三角形內(nèi)角和定理可得出∠EAB+∠AEB=180°﹣∠B,在△BCD中,利用三角形內(nèi)角和定理及∠BCD=∠BDC可得出2∠BDC=180°﹣∠B,進(jìn)而可得出∠EAB+∠AEB=2∠BDC.(1)解:∵∠ACD=15°,∠CAD=40°,∴∠BDC=∠ACD+∠CAD=55°,∴∠BCD=∠BDC=55°.在△BCD中,∠BDC+∠BCD+∠B=180°,∴∠B=180°﹣55°﹣55°=70°.故答案為:70;(2)解:在△ABE中,∠EAB+∠AEB+∠B=180°,∴∠EAB+∠AEB=180°﹣∠B.在△BCD中,∠BDC+∠BCD+∠B=180°,∠BCD=∠BDC,∴2∠BDC=180°﹣∠B,∴∠EAB+∠AEB=2∠BDC.【考點(diǎn)】本題考查了三角形內(nèi)角和定理以及三角形的外角性質(zhì),解題的關(guān)鍵是:(1)利用三角形的外角性質(zhì),求出∠BDC的度數(shù);(2)利用三角形內(nèi)角和定理,找出∠EAB+∠AEB=180°﹣∠B及2∠BDC=180°﹣∠B.5、(1)3(2)①見解析;②45°或36°【解析】【分析】(1)由∠E=40°,∠F=35°可知∠D=105°,再根據(jù)n倍角三角形的定義可得結(jié)論.(2)①根據(jù)三角形內(nèi)角和定理及一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和,利用角的和差計(jì)算即可求得結(jié)果.②首先證明∠EAF=90°,分∠EAF=4∠E和∠F=4∠E兩種情形分別求解即可.(1)解:∵∠E=40°,∠F=35°,∴∠D=180°﹣40°﹣35°=105°,∴∠D=3∠F,∴△ABC為3倍角三角形,故答案為:3;(2)解:①∵AE平分∠BAO,OE平分∠BOQ,∴∠BAO=2∠EAQ,∠BOQ=2∠EOQ,由外角的性質(zhì)可得:∠BOQ=∠BAO+∠ABO,∠EOQ=∠EAQ+∠E,∴∠ABO=∠BOQ﹣∠BAO=2∠EOQ﹣2∠EAQ=2∠EAQ+2∠E﹣2∠EAQ=2∠E,∴∠ABO=2∠E.②∵AE平分∠BAO,AF平分∠OAG,∴∠EAB=∠EAO,∠OAF=∠FAG,∴∠EAF=∠EAO+∠OAF=(∠BAO+∠OAG)=90°,∵△EAF是4倍角三角形,∴當(dāng)∠EAF=4∠E時(shí),∠E=×90°=22.5°,當(dāng)∠F=4∠E時(shí),∠E=×90°=18°,∵∠ABO=2∠E,∴∠ABO=45°或36°.【考點(diǎn)】本題考查三角形的內(nèi)角和定理,角平分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論