




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.(了解概念)在平面直角坐標系中,若,式子的值就叫做線段的“勾股距”,記作.同時,我們把兩邊的“勾股距”之和等于第三邊的“勾股距”的三角形叫做“等距三角形”.(理解運用)在平面直角坐標系中,.(1)線段的“勾股距”;(2)若點在第三象限,且,求并判斷是否為“等距三角形”﹔(拓展提升)(3)若點在軸上,是“等距三角形”,請直接寫出的取值范圍.解析:(1)5;(2)dAC=11,△ABC不是為“等距三角形”;(3)m≥4【分析】(1)根據(jù)兩點之間的直角距離的定義,結合O、P兩點的坐標即可得出結論;(2)根據(jù)兩點之間的直角距離的定義,用含x、y的代數(shù)式表示出來d(O,Q)=4,結合點Q(x,y)在第一象限,即可得出結論;(3)由點N在直線y=x+3上,設出點N的坐標為(m,m+3),通過尋找d(M,N)的最小值,得出點M(2,-1)到直線y=x+3的直角距離.【詳解】解:(1)由“勾股距”的定義知:dOA=|2-0|+|3-0|=2+3=5,故答案為:5;(2)∵dAB=|4-2|+|2-3|=2+1=3,∴2dAB=6,∵點C在第三象限,∴m<0,n<0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),∵dOC=2dAB,∴-(m+n)=6,即m+n=-6,∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,∵5+11≠12,11+12≠5,12+5≠11,∴△ABC不是為“等距三角形”;(3)點C在x軸上時,點C(m,0),則dAC=|2-m|+3,dBC=|4-m|+2,①當m<2時,dAC=2-m+3=5-m,dBC=4-m+2=6-m,若△ABC是“等距三角形”,∴5-m+6-m=11-2m=3,解得:m=4(不合題意),又∵5-m+3=8-m≠6-m,②當2≤m<4時,dAC=m-2+3=m+1,dBC=4-m+2=6-m,若△ABC是“等距三角形”,則m+1+6-m=7≠3,6-m+3=m+1,解得:m=4(不和題意),③當m≥4時,dAC=m+1,dBC=m-2,若△ABC是“等距三角形”,則m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,∴m≥4時,△ABC是“等距三角形”,綜上所述:△ABC是“等距三角形”時,m的取值范圍為:m≥4.【點睛】本題考查坐標與圖形的性質,關鍵是對“勾股距”和“等距三角形”新概念的理解,運用“勾股距”和“等距三角形”解題.2.如圖:在四邊形ABCD中,A、B、C、D四個點的坐標分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點的坐標.(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標.(3)求四邊形ABCD的面積.解析:(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據(jù)圖形寫出對應點的坐標進而得出答案;(2)利用平移規(guī)律進而得出對應點坐標的變化規(guī)律:向上平移1個單位,縱坐標加1;向左平移2個單位,橫坐標減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點睛】此題主要考查了平移變換以及坐標系內四邊形面積求法,正確得出對應點位置是解題關鍵.3.如圖,在平面直角坐標系中,四邊形各頂點的坐標分別為,,,,現(xiàn)將四邊形經過平移后得到四邊形,點的對應點的坐標為.(1)請直接寫點、、的坐標;(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點,連接、,使,若存在這樣一點,求出點的坐標;若不存在,請說明理由.解析:(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點的坐標即可;(2)由平移的性質可知,重疊部分為平行四邊形,且底邊長為3,高為2,即可求出面積;(3)設點的坐標為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個單位,向上平移一個單位;∵,,,∴;(2)如圖,延長交x軸于點E,過點做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設點的坐標為,∵,,∴,∴點的坐標為或.【點睛】本題考查了平移的性質,平行四邊形的性質,坐標與圖形,以及求陰影部分的面積,解題的關鍵是熟練掌握平移的性質進行解題.4.在平面直角坐標系中,已知長方形,點,.(1)如圖,有一動點在第二象限的角平分線上,若,求的度數(shù);(2)若把長方形向上平移,得到長方形.①在運動過程中,求的面積與的面積之間的數(shù)量關系;②若,求的面積與的面積之比.解析:(1)55°或35°;(2)①;②.【解析】【分析】(1)分兩種情況:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根據(jù)點在第二象限的角平分線上,得出∠POE=45°,對頂角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知條件,得出∠CEO=45°,又根據(jù)∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先設長方形向上平移個單位長,得到長方形,然后列出和的面積,即可得出兩者的數(shù)量關系;②首先根據(jù)已知條件判定四邊形是平行四邊形,經過等量轉化,即可得出和的面積,進而得出其面積之比.【詳解】(1)分兩種情況:①令PC交x軸于點E,延長CB至x軸,交于點F,如圖所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵點在第二象限的角平分線上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延長CB,交直線l于點E,由已知得,,∵點在第二象限的角平分線上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案為55°或35°.(2)如圖,①設長方形向上平移個單位長,得到長方形∴②∵長方形,∴∵,令交于E,則四邊形是平行四邊形,∴∴又∵由①得知,∴∴.【點睛】此題主要考查等量轉換和平行四邊形的判定以及性質,熟練掌握,即可解題.5.如圖,在平面直角坐標系中,同時將點A(﹣1,0)、B(3,0)向上平移2個單位長度再向右平移1個單位長度,分別得到A、B的對應點C、D.連接AC,BD(1)求點C、D的坐標,并描出A、B、C、D點,求四邊形ABDC面積;(2)在坐標軸上是否存在點P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點P坐標;若不存在,請說明理由.解析:(1)(0,2),(4,2),見解析,ABDC面積:8;(2)存在,P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根據(jù)向右平移橫坐標加,向上平移縱坐標加寫出點C、D的坐標即可,再根據(jù)平行四邊形的面積公式列式計算即可得解;(2)分點P在x軸和y軸上兩種情況,依據(jù)S△PAC=S四邊形ABCD求解可得.【詳解】(1)由題意知點C坐標為(﹣1+1,0+2),即(0,2),點D的坐標為(3+1,0+2),即(4,2),如圖所示,S四邊形ABDC=2×4=8;(2)當P在x軸上時,∵S△PAC=S四邊形ABCD,∴,∵OC=2,∴AP=8,∴點P的坐標為(7,0)或(﹣9,0);當P在y軸上時,∵S△PAC=S四邊形ABCD,∴,∵OA=1,∴CP=16,∴點P的坐標為(0,18)或(0,﹣14);綜上,點P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【點睛】本題考查了坐標與圖形性質,三角形的面積,坐標與圖形變化﹣平移,熟記各性質是解題的關鍵.6.如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點P,使得△ABC和△OCP的面積相等,若存在,求出點P坐標,若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).解析:(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負數(shù)的性質即可求得a、b的值;(2)先求得S△ABC=4,設P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點P的坐標;(3)①已知BD∥AC,根據(jù)兩直線平行,內錯角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結論,可求得∠3+∠4=45°;過點E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點睛】本題考查了坐標與圖形性質,熟知非負數(shù)的性質、三角形的面積公式及平行線的性質是解決問題的關鍵.7.如圖,在長方形中,為平面直角坐標系的原點,點的坐標為,點的坐標為且、滿足,點在第一象限內,點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動.(1)點的坐標為___________;當點移動5秒時,點的坐標為___________;(2)在移動過程中,當點到軸的距離為4個單位長度時,求點移動的時間;(3)在的線路移動過程中,是否存在點使的面積是20,若存在直接寫出點移動的時間;若不存在,請說明理由.解析:(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負數(shù)的性質可得a、b的值,據(jù)此可得點B的坐標;由點P運動速度和時間可得其運動5秒的路程,得到OP=10,從而得出其坐標;(2)先根據(jù)點P運動11秒判斷出點P的位置,再根據(jù)三角形的面積公式求解可得;(3)分為點P在OC、BC上分類計算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點B(8,12);當點P移動5秒時,其運動路程為5×2=10,∴OP=10,則點P坐標為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當點P在OC上時,點P移動的時間是:4÷2=2秒,第二種情況,當點P在BA上時.點P移動的時間是:(12+8+8)÷2=14秒,所以在移動過程中,當點P到x軸的距離為4個單位長度時,點P移動的時間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時t=,綜上所述,滿足條件的時間t=2.5s或【點睛】本題考查矩形的性質,三角形的面積,坐標與圖形的性質,解題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答問題.8.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點,連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).解析:(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質得出∠ABF=∠BFE,∠DCF=∠EFC,進而解答即可;(2)由(1)的結論和垂直的定義解答即可;(3)由(1)的結論和三角形的角的關系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點睛】本題主要考查平行線的性質,解決本題的關鍵是根據(jù)平行線的性質解答.9.如圖,直線,點是、之間(不在直線,上)的一個動點.(1)如圖1,若與都是銳角,請寫出與,之間的數(shù)量關系并說明理由;(2)把直角三角形如圖2擺放,直角頂點在兩條平行線之間,與交于點,與交于點,與交于點,點在線段上,連接,有,求的值;(3)如圖3,若點是下方一點,平分,平分,已知,求的度數(shù).解析:(1)見解析;(2);(3)75°【分析】(1)根據(jù)平行線的性質、余角和補角的性質即可求解.(2)根據(jù)平行線的性質、對頂角的性質和平角的定義解答即可.(3)根據(jù)平行線的性質和角平分線的定義以及三角形內角和解答即可.【詳解】解:(1)∠C=∠1+∠2,證明:過C作l∥MN,如下圖所示,∵l∥MN,∴∠4=∠2(兩直線平行,內錯角相等),∵l∥MN,PQ∥MN,∴l(xiāng)∥PQ,∴∠3=∠1(兩直線平行,內錯角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)設BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【點睛】本題考查了平行線的性質、余角和補角的性質,解題的關鍵是根據(jù)平行找出角度之間的關系.10.如圖,,直線與、分別交于點、,點在直線上,過點作,垂足為點.(1)如圖1,求證:;(2)若點在線段上(不與、、重合),連接,和的平分線交于點請在圖2中補全圖形,猜想并證明與的數(shù)量關系;解析:(1)證明見解析;(2)補圖見解析;當點在上時,;當點在上時,.【分析】(1)過點作,根據(jù)平行線的性質即可求解;(2)分兩種情況:當點在上,當點在上,再過點作即可求解.【詳解】(1)證明:如圖,過點作,∴,∵,∴.∴.∵,∴,∴.(2)補全圖形如圖2、圖3,猜想:或.證明:過點作.∴.∵,∴∴,∴.∵平分,∴.如圖3,當點在上時,∵平分,∴,∵,∴,即.如圖2,當點在上時,∵平分,∴.∴.即.【點睛】本題考查了平行線的基本性質、角平分線的基本性質及角的運算,解題的關鍵是準確作出平行線,找出角與角之間的數(shù)量關系.11.已知直線,點P為直線、所確定的平面內的一點.(1)如圖1,直接寫出、、之間的數(shù)量關系;(2)如圖2,寫出、、之間的數(shù)量關系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數(shù).解析:(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.12.直線AB∥CD,點P為平面內一點,連接AP,CP.(1)如圖①,點P在直線AB,CD之間,當∠BAP=60°,∠DCP=20°時,求∠APC的度數(shù);(2)如圖②,點P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數(shù)量關系,并說明理由;(3)如圖③,點P在直線CD下方,當∠BAK=∠BAP,∠DCK=∠DCP時,寫出∠AKC與∠APC之間的數(shù)量關系,并說明理由.解析:(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據(jù)平行線的性質即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進行計算即可;(2)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進而得到∠AKC=∠APC;(3)過K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是作出平行線構造內錯角相等計算.13.已知,如圖:射線分別與直線、相交于、兩點,的角平分線與直線相交于點,射線交于點,設,且.(1)________,________;直線與的位置關系是______;(2)如圖,若點是射線上任意一點,且,試找出與之間存在一個什么確定的數(shù)量關系?并證明你的結論.(3)若將圖中的射線繞著端點逆時針方向旋轉(如圖)分別與、相交于點和點時,作的角平分線與射線相交于點,問在旋轉的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計算α和β的值,再根據(jù)內錯角相等可證AB∥CD;(2)先根據(jù)內錯角相等證GH∥PN,再根據(jù)同旁內角互補和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點睛】本題主要考查平行線的判定與性質,熟練掌握內錯角相等證平行,平行線同旁內角互補等知識是解題的關鍵.14.已知點C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關系(用含α的代數(shù)式表示)(3)在②中,過點O′作OB的垂線,與∠OCD的平分線交于點P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關系.解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點作OF∥CD,根據(jù)平行線的判定和性質可得∠OCD、∠BO′E′的數(shù)量關系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地理知識培訓教程課件
- 2025年發(fā)熱的試題及答案
- 全產業(yè)鏈綠色能源項目合作合同書
- 企業(yè)內部溝通流程梳理與優(yōu)化方案
- 2025年軍隊文職人員統(tǒng)一招聘面試( 計算機)預測題及答案
- 2025年高級會計師考試試題附答案
- 貨物運輸數(shù)據(jù)統(tǒng)計協(xié)議
- 在線金融交易服務協(xié)議
- 2025年北京市蔬菜種植采購合同
- 企業(yè)信息資料存檔與檢索工具
- 高等代數(shù)(上)期末復習題
- 應急資源調查表
- 北師大版八年級上冊數(shù)學第二章實數(shù)單元測試卷(含答案)
- 同步控制器說明書
- 05G514-3 12m實腹式鋼吊車梁(中級工作制 A4 A5 Q345鋼)
- GB/T 902.3-2008儲能焊用焊接螺柱
- 土石方填方合同(6篇)
- 汽輪機原理-凝汽器課件
- 典范英語7-2中英文對照翻譯Noisy Neighbours
- 海思芯片HTOL老化測試技術規(guī)范
- 最新版?zhèn)€人征信報告(可編輯+帶水印)
評論
0/150
提交評論