湖北省武漢市武昌區(qū)省水二中學2026屆中考試題猜想數(shù)學試卷含解析_第1頁
湖北省武漢市武昌區(qū)省水二中學2026屆中考試題猜想數(shù)學試卷含解析_第2頁
湖北省武漢市武昌區(qū)省水二中學2026屆中考試題猜想數(shù)學試卷含解析_第3頁
湖北省武漢市武昌區(qū)省水二中學2026屆中考試題猜想數(shù)學試卷含解析_第4頁
湖北省武漢市武昌區(qū)省水二中學2026屆中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省武漢市武昌區(qū)省水二中學2026屆中考試題猜想數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A、B、C在圓周上,

將剪下的扇形作為一個圓錐側面,如果圓錐的高為,則這塊圓形紙片的直徑為(

)A.12cm B.20cm C.24cm D.28cm2.cos30°的值為(

)A.1

B.

C.

D.3.觀察下列圖形,則第n個圖形中三角形的個數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n4.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁5.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.6.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.7.下列各式中,不是多項式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)8.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中結論正確的個數(shù)是()A.1 B.2 C.3 D.49.如圖,在平行四邊形ABCD中,AE:EB=1:2,E為AB上一點,AC與DE相交于點F,S△AEF=3,則S△FCD為()A.6 B.9 C.12 D.2710.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質,對人體健康和大氣環(huán)境質量有很大危害.2.5μm用科學記數(shù)法可表示為()A. B. C. D.11.將函數(shù)的圖象用下列方法平移后,所得的圖象不經(jīng)過點A(1,4)的方法是()A.向左平移1個單位 B.向右平移3個單位C.向上平移3個單位 D.向下平移1個單位12.如圖,已知點A、B、C、D在⊙O上,圓心O在∠D內部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數(shù)和是()A.60° B.45° C.35° D.30°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A的坐標為(3,),點B的坐標為(6,0),將△AOB繞點B按順時針方向旋轉一定的角度后得到△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為_____.14.若代數(shù)式在實數(shù)范圍內有意義,則實數(shù)x的取值范圍為_____.15.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=______.16.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤17.若方程x2﹣4x+1=0的兩根是x1,x2,則x1(1+x2)+x2的值為_____.18.如圖,一根直立于水平地面的木桿AB在燈光下形成影子AC(AC>AB),當木桿繞點A按逆時針方向旋轉,直至到達地面時,影子的長度發(fā)生變化.已知AE=5m,在旋轉過程中,影長的最大值為5m,最小值3m,且影長最大時,木桿與光線垂直,則路燈EF的高度為_____m.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.20.(6分)已知二次函數(shù)的圖象如圖6所示,它與軸的一個交點坐標為,與軸的交點坐標為(0,3).求出此二次函數(shù)的解析式;根據(jù)圖象,寫出函數(shù)值為正數(shù)時,自變量的取值范圍.21.(6分)如圖,已知AB是⊙O的直徑,BC⊥AB,連結OC,弦AD∥OC,直線CD交BA的延長線于點E.(1)求證:直線CD是⊙O的切線;(2)若DE=2BC,AD=5,求OC的值.22.(8分)九(3)班“2017年新年聯(lián)歡會”中,有一個摸獎游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學去翻紙牌.(1)現(xiàn)小芳有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎.她從中隨機翻開一張紙牌,求小芳獲獎的概率.(2)如果小芳、小明都有翻兩張牌的機會.小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們獲獎的機會相等嗎?通過樹狀圖分析說明理由.23.(8分)如圖,AB為⊙O的直徑,點E在⊙O,C為弧BE的中點,過點C作直線CD⊥AE于D,連接AC、BC.試判斷直線CD與⊙O的位置關系,并說明理由若AD=2,AC=,求⊙O的半徑.24.(10分)在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).求一次函數(shù)和反比例函數(shù)解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據(jù)圖象,直接寫出不等式的解集.25.(10分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.26.(12分)某車間的甲、乙兩名工人分別同時生產(chǎn)只同一型號的零件,他們生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:(1)甲每分鐘生產(chǎn)零件_______只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件_______只;(2)若乙提高速度后,乙的生產(chǎn)速度是甲的倍,請分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關系式;(3)當兩人生產(chǎn)零件的只數(shù)相等時,求生產(chǎn)的時間;并求出此時甲工人還有多少只零件沒有生產(chǎn).27.(12分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關系.(1)當α=60°時,將△ABP繞點A逆時針旋轉60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關系,并給出證明;(3)PA、PB、PC滿足的等量關系為.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質得到AB=R,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【詳解】設這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據(jù)題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.2、D【解析】cos30°=.故選D.3、D【解析】試題分析:由已知的三個圖可得到一般的規(guī)律,即第n個圖形中三角形的個數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個圖形可以知道:第1個圖形中三角形的個數(shù)是4,第2個圖形中三角形的個數(shù)是8,第3個圖形中三角形的個數(shù)是12,從而得出一般的規(guī)律,第n個圖形中三角形的個數(shù)是4n.故選D.考點:規(guī)律型:圖形的變化類.4、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是?。蔬xD.5、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.6、A【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、D【解析】

原式分解因式,判斷即可.【詳解】原式=2(x2﹣2x+1)=2(x﹣1)2。故選:D.【點睛】考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.8、C【解析】

試題解析:∵圖象與x軸有兩個交點,∴方程ax2+bx+c=0有兩個不相等的實數(shù)根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正確;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正確;∵當x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③錯誤;∵由圖象可知x=﹣1時該二次函數(shù)取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正確∴正確的有①②④三個,故選C.考點:二次函數(shù)圖象與系數(shù)的關系.【詳解】請在此輸入詳解!9、D【解析】

先根據(jù)AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性質即可得出結論.【詳解】解:∵四邊形ABCD是平行四邊形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴==()2,解得S△FCD=1.故選D.【點睛】本題考查的是相似三角形的判定與性質,熟知相似三角形面積的比等于相似比的平方是解答此題的關鍵.10、C【解析】試題分析:大于0而小于1的數(shù)用科學計數(shù)法表示,10的指數(shù)是負整數(shù),其絕對值等于第一個不是0的數(shù)字前所有0的個數(shù).考點:用科學計數(shù)法計數(shù)11、D【解析】A.平移后,得y=(x+1)2,圖象經(jīng)過A點,故A不符合題意;B.平移后,得y=(x?3)2,圖象經(jīng)過A點,故B不符合題意;C.平移后,得y=x2+3,圖象經(jīng)過A點,故C不符合題意;D.平移后,得y=x2?1圖象不經(jīng)過A點,故D符合題意;故選D.12、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(,)【解析】

作AC⊥OB、O′D⊥A′B,由點A、B坐標得出OC=3、AC=、BC=OC=3,從而知tan∠ABC==,由旋轉性質知BO′=BO=6,tan∠A′BO′=tan∠ABO==,設O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的長即可.【詳解】如圖,過點A作AC⊥OB于C,過點O′作O′D⊥A′B于D,

∵A(3,),

∴OC=3,AC=,

∵OB=6,

∴BC=OC=3,

則tan∠ABC==,

由旋轉可知,BO′=BO=6,∠A′BO′=∠ABO,

∴==,

設O′D=x,BD=3x,

由O′D2+BD2=O′B2可得(x)2+(3x)2=62,

解得:x=或x=?(舍),

則BD=3x=,O′D=x=,

∴OD=OB+BD=6+=,

∴點O′的坐標為(,).【點睛】本題考查的是圖形的旋轉,熟練掌握勾股定理和三角函數(shù)是解題的關鍵.14、x≤1【解析】

根據(jù)二次根式有意義的條件可求出x的取值范圍.【詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【點睛】本題考查二次根式有意義的條件,解題的關鍵是利用被開方數(shù)是非負數(shù)解答即可.15、3﹣【解析】

首先設點B的橫坐標,由點B在拋物線y1=x2(x≥0)上,得出點B的坐標,再由平行,得出A和C的坐標,然后由CD平行于y軸,得出D的坐標,再由DE∥AC,得出E的坐標,即可得出DE和AB,進而得解.【詳解】設點B的橫坐標為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【點睛】此題主要考查拋物線中的坐標求解,關鍵是利用平行的性質.16、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結論為:②③.考點:1.相似三角形的判定與性質;2.全等三角形的判定與性質.17、5【解析】由題意得,,.∴原式18、7.5【解析】試題解析:當旋轉到達地面時,為最短影長,等于AB,∵最小值3m,∴AB=3m,∵影長最大時,木桿與光線垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴∵AE=5m,∴解得:EF=7.5m.故答案為7.5.點睛:相似三角形的性質:相似三角形的對應邊成比例.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,∴不同意他的看法;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質,正確理解新定義是解題的關鍵.20、(1);(2).【解析】

(1)將(-1,0)和(0,3)兩點代入二次函數(shù)y=-x2+bx+c,求得b和c;從而得出拋物線的解析式;

(2)令y=0,解得x1,x2,得出此二次函數(shù)的圖象與x軸的另一個交點的坐標,進而求出當函數(shù)值y>0時,自變量x的取值范圍.【詳解】解:(1)由二次函數(shù)的圖象經(jīng)過和兩點,得,解這個方程組,得,拋物線的解析式為,(2)令,得.解這個方程,得,.∴此二次函數(shù)的圖象與軸的另一個交點的坐標為.當時,.【點睛】本題考查的知識點是二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點,解題的關鍵是熟練的掌握二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點.21、(1)證明見解析;(2)OC=15【解析】試題分析:(1)首選連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易證得△EDA∽△ECO,然后由相似三角形的對應邊成比例,求得AD:OC的值.試題解析:(1)連結DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO,OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵點D在⊙O上,∴CD是⊙O的切線.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考點:1.切線的判定2.全等三角形的判定與性質3.相似三角形的判定與性質.22、(1);(2)他們獲獎機會不相等,理由見解析.【解析】

(1)根據(jù)正面有2張笑臉、2張哭臉,直接利用概率公式求解即可求得答案;(2)根據(jù)題意分別列出表格,然后由表格即可求得所有等可能的結果與獲獎的情況,再利用概率公式求解即可求得他們獲獎的概率.【詳解】(1)∵有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉,翻一次牌正面是笑臉的就獲獎,正面是哭臉的不獲獎,∴獲獎的概率是;故答案為;(2)他們獲獎機會不相等,理由如下:小芳:笑1笑2哭1哭2笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2∵共有16種等可能的結果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有12種情況,∴P(小芳獲獎)=;小明:笑1笑2哭1哭2笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2∵共有12種等可能的結果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有10種情況,∴P(小明獲獎)=,∵P(小芳獲獎)≠P(小明獲獎),∴他們獲獎的機會不相等.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)直線CD與⊙O相切;(2)⊙O的半徑為1.1.【解析】

(1)相切,連接OC,∵C為的中點,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直線CD與⊙O相切;(2)連接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切線,∴=AD?DE,∴DE=1,∴CE==,∵C為的中點,∴BC=CE=,∵AB為⊙O的直徑,∴∠ACB=90°,∴AB==2.∴半徑為1.124、(1)y=﹣x+,y=;(2)12;(3)x<﹣2或0<x<4.【解析】

(1)將點A坐標代入解析式,可求解析式;(2)一次函數(shù)和反比例函數(shù)解析式組成方程組,求出點B坐標,即可求△ABF的面積;(3)直接根據(jù)圖象可得.【詳解】(1)∵一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A(﹣3,2)、B兩點,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函數(shù)解析式y(tǒng)=﹣,反比例函數(shù)解析式y(tǒng)=.(2)根據(jù)題意得:,解得:,∴S△ABF=×4×(4+2)=12(3)由圖象可得:x<﹣2或0<x<4【點睛】本題考查了反比例函數(shù)圖象與一次函數(shù)圖象的交點問題,待定系數(shù)法求解析式,熟練運用函數(shù)圖象解決問題是本題的關鍵.25、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質得到,利用等腰三角形的性質得到∠BAC=∠MAN,根據(jù)相似三角形的性質即可得到結論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質、等邊三角形的性質、等腰三角形的性質、全等三角形的性質定理和判定定理、相似三角形的性質定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論