




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖,菱形ABCD中,∠ABC=60°,AB=4,E是邊AD上一動(dòng)點(diǎn),將△CDE沿CE折疊,得到△CFE,則△BCF面積的最大值是(
)A.8 B. C.16 D.2、如圖,在正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)E是邊BC上的一個(gè)動(dòng)點(diǎn),OE⊥OF,交邊AB于點(diǎn)F,點(diǎn)G,H分別是點(diǎn)E,F(xiàn)關(guān)于直線AC的對(duì)稱點(diǎn),點(diǎn)E從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B時(shí),圖中陰影部分面積的大小變化是()A.先增大后減小 B.先減小后增大C.一直不變 D.不確定3、反比例函數(shù)圖象的兩個(gè)分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(
)A. B.C. D.4、如圖,四邊形OABC是平行四邊形,點(diǎn)A的坐標(biāo)為A(3,0),∠COA=60°,D為邊AB的中點(diǎn),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)C,D兩點(diǎn),直線CD與y軸相交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為(
)A.(0,2) B.(0,3) C.(0,5) D.(0,6)5、下列說(shuō)法中不正確的是()A.任意兩個(gè)等邊三角形相似 B.有一個(gè)銳角是40°的兩個(gè)直角三角形相似C.有一個(gè)角是30°的兩個(gè)等腰三角形相似 D.任意兩個(gè)正方形相似6、在一次酒會(huì)上,每?jī)扇硕贾慌鲆淮伪绻还才霰?5次,則參加酒會(huì)的人數(shù)為(
)A.9人 B.10人 C.11人 D.12人二、多選題(6小題,每小題2分,共計(jì)12分)1、如圖,四邊形ABCD為菱形,BFAC,DF交AC的延長(zhǎng)線于點(diǎn)E,交BF于點(diǎn)2、如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論中正確的是()A.AC=AD B.BD⊥AC C.四邊形ACED是菱形 D.∠ADC=60°3、下列方程一定不是一元二次方程的是(
)A. B.C. D.4、如圖,∠1=∠2,則下列各式能說(shuō)明ABC∽ADE的是(
)A.∠D=∠B B.∠E=∠C C. D.5、如圖,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且,下列結(jié)論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的為(
)A.① B.② C.③ D.④6、下列命題正確的是(
)A.菱形既是中心對(duì)稱圖形又是軸對(duì)稱圖形B.的算術(shù)平方根是5C.如果一個(gè)多邊形的各個(gè)內(nèi)角都等于108°,則這個(gè)多邊形是正五邊形D.如果方程有實(shí)數(shù)根,則實(shí)數(shù)第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,矩形的兩邊,的長(zhǎng)分別為3、8,E是的中點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)E,與交于點(diǎn)F.若,則反比例函數(shù)的表達(dá)式為______.2、正方形ABCD的邊長(zhǎng)為1,點(diǎn)P為對(duì)角線AC上任意一點(diǎn),PE⊥AD,PF⊥CD,垂足分別是E,F(xiàn).則PE+PF=_____.3、如圖,在邊長(zhǎng)為1的正方形ABCD中,等邊△AEF的頂點(diǎn)E、F分別在邊BC和CD上則下列結(jié)論:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正確的有______(用序號(hào)填寫)4、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長(zhǎng)=_____.5、如圖,將矩形的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無(wú)縫隙重疊的四邊形,若,,則邊的長(zhǎng)是____.6、如圖,正方形ABCO的邊長(zhǎng)為,OA與x軸正半軸的夾角為15°,點(diǎn)B在第一象限,點(diǎn)D在x軸的負(fù)半軸上,且滿足∠BDO=15°,直線y=kx+b經(jīng)過(guò)B、D兩點(diǎn),則b﹣k=_____.7、關(guān)于的方程,k=_____時(shí),方程有實(shí)數(shù)根.8、菱形的一條對(duì)角線長(zhǎng)為8,其邊長(zhǎng)是方程x2-8x+15=0的一個(gè)根,則該菱形的面積為________.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于點(diǎn)M.(1)求證:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于點(diǎn)N,四邊形BNCM是什么四邊形?請(qǐng)證明你的結(jié)論.2、已知x1,x2是關(guān)于x的一元二次方程x2-4mx+4m2-9=0的兩實(shí)數(shù)根.(1)若這個(gè)方程有一個(gè)根為-1,求m的值;(2)若這個(gè)方程的一個(gè)根大于-1,另一個(gè)根小于-1,求m的取值范圍;(3)已知Rt△ABC的一邊長(zhǎng)為7,x1,x2恰好是此三角形的另外兩邊的邊長(zhǎng),求m的值.3、(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說(shuō)明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長(zhǎng).4、已知,AB=18,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),分別以AP、BP為邊在AB的同側(cè)作正方形.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.(1)如圖1,若兩個(gè)正方形的面積之和,當(dāng)時(shí),求出的大??;(2)如圖2,當(dāng)取不同值時(shí),判斷直線和的位置關(guān)系,說(shuō)明理由;(3)如圖3,用表示出四邊形的面積.5、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.6、(1)閱讀理解如圖,點(diǎn),在反比例函數(shù)的圖象上,連接,取線段的中點(diǎn).分別過(guò)點(diǎn),,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點(diǎn).點(diǎn),,的橫坐標(biāo)分別為,,.小紅通過(guò)觀察反比例函數(shù)的圖象,并運(yùn)用幾何知識(shí)得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個(gè)關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.(2)證明命題小東認(rèn)為:可以通過(guò)“若,則”的思路證明上述命題.小晴認(rèn)為:可以通過(guò)“若,,且,則”的思路證明上述命題.請(qǐng)你選擇一種方法證明(1)中的命題.-參考答案-一、單選題1、A【解析】【分析】由三角形底邊BC是定長(zhǎng),所以當(dāng)△BCF的高最大時(shí),△BCF的面積最大,即當(dāng)FC⊥BC時(shí),三角形有最大面積.【詳解】解:在菱形ABCD中,BC=CD=AB=4又∵將△CDE沿CE折疊,得到△CFE,∴FC=CD=4由此,△BCF的底邊BC是定長(zhǎng),所以當(dāng)△BCF的高最大時(shí),△BCF的面積最大,即當(dāng)FC⊥BC時(shí),三角形有最大面積∴△BCF面積的最大值是故選:A.【考點(diǎn)】本題考查菱形的性質(zhì)和折疊的性質(zhì),掌握三角形面積的計(jì)算方法和菱形的性質(zhì)正確推理計(jì)算是解題關(guān)鍵.2、C【解析】【分析】連接BD,證明△FOB≌△EOC,同理得到△HOD≌△GOC,即可得到答案.【詳解】解:連接BD,∵四邊形ABCD是正方形,∴∠BOC=90°,,∴∠BOЕ+∠EOC=90°,∵OE⊥OF,∴∠BOE+∠FOB=90°,∴∠FOB=∠EOC,在△FOB和△EOC,,∴△FOB≌△EOC,同理,△HOD≌△GOC,∴圖中陰影部分的面積=△ABD的面積=正方形ABCD的面積.∴陰影部分面積的大小一直不變.故選:C.【考點(diǎn)】本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì),掌握正方形的性質(zhì)、全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)題意可得,進(jìn)而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個(gè)分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負(fù)半軸,且經(jīng)過(guò)第一、三、四象限.觀察選項(xiàng)只有D選項(xiàng)符合.故選D【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關(guān)鍵.4、B【解析】【分析】作CE⊥x軸于點(diǎn)E,過(guò)B作BF⊥x軸于F,過(guò)D作DM⊥x軸于M,設(shè)C的坐標(biāo)為(x,x),表示出D的坐標(biāo),將C、D兩點(diǎn)坐標(biāo)代入反比例函數(shù)的解析式,解關(guān)于x的方程求出x即可得到點(diǎn)C、D的坐標(biāo),進(jìn)而求得直線CD的解析式,最后計(jì)算該直線與y軸交點(diǎn)坐標(biāo)即可得出結(jié)果.【詳解】解:作CE⊥x軸于點(diǎn)E,則∠CEO=90°,過(guò)B作BF⊥x軸于F,過(guò)D作DM⊥x軸于M,則BF=CE,DM∥BF,BF=CE,∵D為AB的中點(diǎn),∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴設(shè)C的坐標(biāo)為(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四邊形OABC是平行四邊形,A(3,0),∴OF=3+x,OM=3+x,即D點(diǎn)的坐標(biāo)為(3+x,),把C、D的坐標(biāo)代入y=得:k=x?x=(3+x)?,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),設(shè)直線CD解析式為:y=ax+b,則,解得,∴直線CD解析式為:,∴當(dāng)x=0時(shí),,∴點(diǎn)E的坐標(biāo)為(0,).故選:B.【考點(diǎn)】本題主要考查了平行四邊形的性質(zhì)、運(yùn)用待定系數(shù)法求函數(shù)的解析式以及含度角的直角三角形的性質(zhì).根據(jù)反比例函數(shù)圖象經(jīng)過(guò)C、D兩點(diǎn),得出關(guān)于x的方程是解決問(wèn)題的關(guān)鍵.5、C【解析】【分析】直接利用相似圖形的性質(zhì)分別分析得出答案.【詳解】A.任意兩個(gè)等邊三角形相似,說(shuō)法正確;B.有一個(gè)銳角是40°的兩個(gè)直角三角形相似,說(shuō)法正確;C.有一個(gè)角是30°的兩個(gè)等腰三角形相似,30°有可能是頂角或底角,故說(shuō)法錯(cuò)誤;D.任意兩個(gè)正方形相似,說(shuō)法正確.故選:C.【考點(diǎn)】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關(guān)鍵.6、C【解析】【分析】設(shè)參加酒會(huì)的人數(shù)為x人,每人碰杯次數(shù)為次,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設(shè)參加酒會(huì)的人數(shù)為x人,依題可得:x(x-1)=55,化簡(jiǎn)得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案為C.【考點(diǎn)】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題中的等量關(guān)系列出方程.二、多選題1、ABD【解析】【分析】根據(jù)菱形的性質(zhì)、全等三角形的判定與性質(zhì)、中線的性質(zhì)即可依次判斷.【詳解】解:∵四邊形ABCD為菱形,∴AB=AD,∠BAE=∠DAE,∵AE=AE,∴△ABE≌△ADE(SAS);∴BE=DE,∠AEB=∠AED,∵CE=CE,∴△CBE≌△CDE(SAS),A正確;∵BFAC,∴∠FBE=∠AEB,∠AED=∠F,∴∠FBE=∠F,∴BE=EF,∴DE=FE,B正確;連接BD交AC于O,∵AO=CO,∵CE:AC=1:2,∴AO=CO=CE,設(shè)S△BCE=m,∴S△ABC=S△ADC=2m,S△BOE=S△DOE=2m,∴S四邊形ABDC=4m,S△BDE=4m,∵E點(diǎn)是DF中點(diǎn)∴S△BEF=S△BDE=4m,∴S△BEF=S四邊形ABCD,故D正確;∵AE與DE不相等,故AE與BE不相等故C錯(cuò)誤;故選:ABD.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),菱形的性質(zhì),平行線的性質(zhì),三角形的面積的計(jì)算,正確的識(shí)別圖形是解題的關(guān)鍵.2、ABCD【解析】【分析】由旋轉(zhuǎn)和等邊三角形性質(zhì)得到,,,可推導(dǎo)得到是等邊三角形,再由等邊三角形性質(zhì)判斷A、D是否正確;根據(jù)菱形的判定得到四邊形是菱形,從而判斷C是否正確,結(jié)合前兩問(wèn)可推導(dǎo)得到四邊形是菱形,從而得到B是否正確【詳解】證明:∵將等邊繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到
∴,∴,∴∴是等邊三角形∴,∵∴四邊形是菱形又∵,且是等邊三角形∴∴四邊形是菱形∴綜上所述:選項(xiàng)A、B、C、D全部正確故選:ABCD【考點(diǎn)】本題考查等邊三角形的性質(zhì),菱形的判定和性質(zhì),根據(jù)相關(guān)定理內(nèi)容解題是切入點(diǎn).3、AB【解析】【分析】根據(jù)只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進(jìn)行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項(xiàng)符合題意;B、含有兩個(gè)未知數(shù),一定不是一元二次方程,故本選項(xiàng)符合題意;C、當(dāng)a=0時(shí),不是一元二次方程,當(dāng)a≠0時(shí),是一元二次方程,故本選項(xiàng)不符合題意;D、是一元二次方程,故本選項(xiàng)不符合題意.故選:AB.【考點(diǎn)】本題考查的是一元二次方程的定義,熟知只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關(guān)鍵.4、ABC【解析】【分析】根據(jù)∠1=∠2,可知∠DAE=∠BAC,因此只要再找一組對(duì)應(yīng)角相等或兩組對(duì)應(yīng)邊成比例即可.【詳解】解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、∵∠DAE=∠BAC,∠D=∠B,∴ABC∽ADE,故A選項(xiàng)正確;B、∵∠DAE=∠BAC,∠E=∠C,∴ABC∽ADE,故B選項(xiàng)正確;C、∵∠DAE=∠BAC,,∴ABC∽ADE,故C選項(xiàng)正確;D、對(duì)應(yīng)邊成比例但無(wú)法證明其夾角相等,故其不能推出兩三角形相似.故選:ABC.【考點(diǎn)】此題考查了相似三角形的判定:①有兩個(gè)對(duì)應(yīng)角相等的三角形相似;②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似,熟練掌握相似三角形的判定是解決本題的關(guān)鍵.5、BC【解析】【分析】根據(jù)相似三角形的定義,已知條件判定相似的三角形,再利用相似三角形的性質(zhì)逐一判斷選項(xiàng)即可.【詳解】解:在正方形中,是的中點(diǎn),是上一點(diǎn),且,,..,.,,,..,.②③正確.故選:BC.【考點(diǎn)】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握判定定理有①有兩個(gè)對(duì)應(yīng)角相等的三角形相似,②有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似.6、AD【解析】【分析】利用菱形的對(duì)稱性、算術(shù)平方根的定義、多邊形的內(nèi)角和、一元二次方程根的判別式等知識(shí)分別判斷后即可確定正確的選項(xiàng).【詳解】解:A、菱形既是中心對(duì)稱圖形又是軸對(duì)稱圖形,故命題正確,符合題意;B、的算術(shù)平方根是,故命題錯(cuò)誤,不符合題意;C、若一個(gè)多邊形的各內(nèi)角都等于108°,各邊也相等,則它是正五邊形,故命題錯(cuò)誤,不符合題意;D、對(duì)于方程,當(dāng)a=0時(shí),方程,變?yōu)?x+1=0,有實(shí)數(shù)根,當(dāng)a≠0時(shí),時(shí),即,方程有實(shí)數(shù)根,綜上所述,方程有實(shí)數(shù)根,則實(shí)數(shù),故命題正確,符合題意.故選:AD.【考點(diǎn)】考查了命題與定理的知識(shí),解題的關(guān)鍵是了解算術(shù)平方根的定義、菱形的對(duì)稱性、多邊形的內(nèi)角和、一元二次方程根的判別式等知識(shí),難度不大.三、填空題1、【解析】【分析】利用勾股定理計(jì)算出,則,設(shè),則,,,利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到,解得,所以,即可求出的值,從而得到反比例函數(shù)的表達(dá)式.【詳解】解:如圖連接AE,∵矩形的兩邊,的長(zhǎng)分別為3、8,E是的中點(diǎn),,,,設(shè),則,是的中點(diǎn),,,,在反比例函數(shù)的圖象上,,解得,,,反比例函數(shù)的表達(dá)式是.故答案為.【考點(diǎn)】本題考查了待定系數(shù)法求反比例函數(shù)的解析式、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、矩形的性質(zhì)、勾股定理的應(yīng)用,表示出點(diǎn)的坐標(biāo)是解題的關(guān)鍵.2、1【解析】【分析】證明四邊形DEPF是矩形得PE=DF,證明△PFC是等腰直角三角形得PF=CF便可求得結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四邊形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案為:1.【考點(diǎn)】本題主要考查了正方形的性質(zhì),矩形的性質(zhì)與判定,等腰直角三角形的判定,關(guān)鍵是證明PE=DF,PF=CF.3、①②④【解析】【分析】根據(jù)三角形的全等的知識(shí)可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)等邊三角形的邊長(zhǎng)求得直角三角形的邊長(zhǎng),從而求得面積③的正誤,根據(jù)勾股定理列方程可以判斷④的正誤.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①說(shuō)法正確;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②說(shuō)法正確;∵正方形ABCD的邊長(zhǎng)為1,③說(shuō)法錯(cuò)誤,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,設(shè)BE=DF=x,∴CE=CF=1-x,(不合題意,舍去),∴EF=;④說(shuō)法正確;∴正確的有①②④.故答案為①②④.【考點(diǎn)】本題主要考查正方形的性質(zhì)的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練掌握全等三角形的證明以及輔助線的正確作法,此題難度不大.4、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長(zhǎng),即為EC的長(zhǎng).【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點(diǎn)】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.5、【解析】【分析】由折疊的性質(zhì)和矩形的性質(zhì)可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設(shè)AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,F(xiàn)B=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設(shè)AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點(diǎn)】本題考查了翻折變換,矩形的性質(zhì),勾股定理,全等三角形的判定和性質(zhì),利用勾股定理列出方程是本題的關(guān)鍵.6、2﹣.【解析】【分析】連接OB,過(guò)點(diǎn)B作BE⊥x軸于點(diǎn)E,根據(jù)正方形的性質(zhì)可得出∠AOB的度數(shù)及OB的長(zhǎng),結(jié)合三角形外角的性質(zhì)可得出∠BDO=∠DBO,利用等角對(duì)等邊可得出OD=OB,進(jìn)而可得出點(diǎn)D的坐標(biāo),在Rt△BOE中,通過(guò)解直角三角形可得出點(diǎn)B的坐標(biāo),由點(diǎn)B,D的坐標(biāo),利用待定系數(shù)法可求出k,b的值,再將其代入(b﹣k)中即可求出結(jié)論.【詳解】解:連接OB,過(guò)點(diǎn)B作BE⊥x軸于點(diǎn)E,如圖所示.∵正方形ABCO的邊長(zhǎng)為,∴∠AOB=45°,OB=OA=2.∵OA與x軸正半軸的夾角為15°,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴點(diǎn)D的坐標(biāo)為(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴點(diǎn)B的坐標(biāo)為(,1).將B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案為:2﹣.【考點(diǎn)】此題考查的是正方形的性質(zhì)、等腰三角形的判定、直角三角形的性質(zhì)和求一次函數(shù)的解析式,掌握正方形的性質(zhì)、等角對(duì)等邊、30°所對(duì)的直角邊是斜邊的一半、勾股定理和利用待定系數(shù)法求一次函數(shù)解析式是解決此題的關(guān)鍵.7、【解析】【分析】由于最高次項(xiàng)前面的系數(shù)不確定,所以進(jìn)行分類討論:①當(dāng)時(shí),直接進(jìn)行求解;②當(dāng)時(shí),方程為一元二次方程,利用根的判別式,確定k的取值范圍,最后綜合①②即可求出滿足題意的k的取值范圍.【詳解】解:①當(dāng)時(shí),方程化為:,解得:,符合題意;②當(dāng)時(shí),∵方程有實(shí)數(shù)根,∴,即,解得:,∴且;綜上所述,當(dāng)時(shí),方程有實(shí)數(shù)根,故答案為:.【考點(diǎn)】題目主要考查方程的解的情況,包括一元一次方程及一元二次方程的求解,分情況討論方程的解是解題關(guān)鍵.8、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據(jù)菱形的性質(zhì)得到菱形的邊長(zhǎng)為5,利用勾股定理計(jì)算出菱形的另一條對(duì)角線長(zhǎng),然后根據(jù)菱形的面積公式計(jì)算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對(duì)角線長(zhǎng)為8,∴菱形的邊長(zhǎng)為5,∵菱形的另一條對(duì)角線長(zhǎng)=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點(diǎn)】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡(jiǎn)便易用,是解一元二次方程最常用的方法.也考查了菱形的性質(zhì).四、解答題1、(1)證明見解析;(2)四邊形BNCM是菱形,證明見解析.【解析】【分析】(1)根據(jù)題意利用AAS可證明出△ABM和△DCM,然后根據(jù)全等三角形的性質(zhì)得出∠MBC=∠MCB,最后利用AAS即可作出證明;(2)根據(jù)平行線的性質(zhì)和題意,即可得出△MBC≌△NCB,根據(jù)全等三角形的性質(zhì)即可作出證明.【詳解】如圖所示(1)在△ABM和△DCM中,,∴△ABM≌△DCM(AAS),∴BM=CM,∴∠MBC=∠MCB,在△ABC和△DCB中,,∴△ABC≌△DCB(AAS)(2)四邊形BNCM是菱形,其理由如下:∵CN∥BD,∴∠MBC=∠NCB,又∵BN∥AC,∴∠MCB=∠NBC,在△MBC和△NCB中,,∴△MBC≌△NCB(ASA),∴BM=CN,MC=NB,又∵BM=CM,∴BM=MC=CN=NB,∴四邊形BNCM是菱形.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)和判定和菱形的判定,熟練運(yùn)用相關(guān)的判定與性質(zhì)是解題的關(guān)鍵.2、(1)m的值為1或-2(2)-2<m<1(3)m=或m=【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的兩根,然后列出m的不等式組,求出m的取值范圍;(3)首先用m表示出方程的兩根,分直角△ABC的斜邊長(zhǎng)為7或2m+3,根據(jù)勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的兩實(shí)數(shù)根,這個(gè)方程有一個(gè)根為-1,∴將x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∴m的值為1或-2.(2)解:∵x2-4mx+4m2=9,∴(x-2m)2=9,即x-2m=±3.∴x1=2m+3,x2=2m-3.∵2m+3>2m-3,∴解得-2<m<1.∴m的取值范圍是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的兩根分別為2m+3,2m-3.若Rt△ABC的斜邊長(zhǎng)為7,則有49=(2m+3)2+(2m-3)2.解得m=±.∵邊長(zhǎng)必須是正數(shù),∴m=.若斜邊為2m+3,則(2m+3)2=(2m-3)2+72.解得m=.綜上所述,m=或m=.【考點(diǎn)】本題主要考查了根的判別式與根與系數(shù)的關(guān)系的知識(shí),解答本題的關(guān)鍵是熟練掌握根與系數(shù)關(guān)系以及根的判別式的知識(shí),此題難度一般.3、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問(wèn)題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問(wèn)題;(3)如圖3中,作PM⊥BC交BC的延長(zhǎng)線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問(wèn)題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司向股東借款合同
- 2026新高考物理一輪復(fù)習(xí)專練:拋體運(yùn)動(dòng)(試卷+答案解析)
- 2025年云南省中考生物試卷(含解析)
- 《金屬與酸和水的反應(yīng)、鋁與氫氧化鈉溶液的反應(yīng)》學(xué)案2
- 《統(tǒng)一多民族國(guó)家的捍衛(wèi)者康熙帝》導(dǎo)學(xué)案3
- 2025年蘇科版七年級(jí)數(shù)學(xué)上冊(cè)第6章綜合測(cè)試試卷及答案
- 2025年蘇教版七年級(jí)生物下冊(cè)期末專項(xiàng)培優(yōu):植物在生物圈中的作用綜合題(含解析)
- 基于單片機(jī)的自動(dòng)晾衣架系統(tǒng)設(shè)計(jì)與制作
- 2025年新能源發(fā)電消納能力提升路徑研究報(bào)告
- 2025年工業(yè)互聯(lián)網(wǎng)平臺(tái)同態(tài)加密技術(shù)在數(shù)據(jù)安全防護(hù)中的應(yīng)用策略報(bào)告
- 國(guó)家籃球裁判考試題目含答案
- 智能化招生系統(tǒng)在2025年教育行業(yè)中的應(yīng)用與招生策略優(yōu)化報(bào)告
- 2024年人力資源管理師技能大賽理論題庫(kù)
- 2025至2030中國(guó)盆底康復(fù)治療儀行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展報(bào)告
- 無(wú)人機(jī)培訓(xùn)機(jī)構(gòu)運(yùn)營(yíng)管理方案
- 物業(yè)管理公司市場(chǎng)拓展方案
- GB 35181-2025重大火災(zāi)隱患判定規(guī)則
- 針刀室管理制度
- 醫(yī)療投訴管理培訓(xùn)
- 提升門施工方案
- 皮內(nèi)注射完整版本
評(píng)論
0/150
提交評(píng)論