




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
WorkingPaperNo.1085
FiscalDeficitandTermStructureofInterestRateLinksonCorporateInvestment:
AnalyzingthePost-PandemicMonetaryPolicyTransmissionUsingIndianHigh
FrequencyData
by
LekhaChakraborty
NationalInstituteofPublicFinanceandPolicyandLevyEconomicsInstitute
and
C.Prasanth
NationalInstituteofPublicFinanceandPolicy
July2025
ChakrabortyisprofessoratNIPFPandResearchAssociateattheLevyEconomicsInstitute;PrasanthisformerresearcheratNIPFP.ThanksareduetoKavitaIssarforthetechnicalhelp.
TheLevyEconomicsInstituteWorkingPaperCollectionpresentsresearchinprogressbyLevyInstitutescholarsandconferenceparticipants.Thepurposeoftheseriesistodisseminateideastoandelicit
commentsfromacademicsandprofessionals.
LevyEconomicsInstituteofBardCollege,foundedin1986,isanonprofit,nonpartisan,
independentlyfundedresearchorganizationdevotedtopublicservice.Throughscholarshipandeconomicresearch,itgeneratesviable,effectivepublicpolicyresponsestoimportanteconomicproblemsthatprofoundlyaffectthequalityoflifeintheUnitedStatesandabroad.
LevyEconomicsInstitute
P.O.Box5000
Annandale-on-Hudson,NY12504-5000
Copyright?LevyEconomicsInstitute2025AllrightsreservedISSN1547-366X
ABSTRACT
1
Usinghigh-frequencymacrodatafromafinanciallyderegulatedregime,thispaperexamineswhetherthereisanyevidenceoffinancialcrowdingoutinIndia.Themacroeconomic
channelthroughwhichfinancialcrowdingoutoccursisthelinkbetweenthefiscaldeficitandtheinterestratedetermination.Theresultsrevealedthatthefiscaldeficitdoesnot
significantlydetermineinterestratesinthepost-pandemicmonetarypolicystanceinIndia.
Thelong-terminterestrateswerestronglyinfluencedbytheshort-terminterestrates,afactwhichreinforcesthatthetermstructureisoperatinginIndia.Theresultsfurtherrevealedthatlong-terminterestrateswerealsopositivelyinfluencedbycapitalflowsandinflation
expectations,whileinverselyimpactedbythemoneysupply.TheseinferenceshavepolicyimplicationsonthefiscalandmonetarypolicycoordinationinIndia,whereitiscrucialto
analyzetheeffectofahigh-interest-rateregimeonpubliccorporateinvestment.Ourresultsshowedthatpublicinfrastructureinvestmentandrateofinterestaresignificantdeterminantsofprivatecorporateinvestment.Ourresultscounterthepopularbeliefthatdeficitsdetermineinterestratesinthecontextofemergingeconomiesand“crowdout”privatecorporate
investment.
KEYWORDS:fiscaldeficit,interestratedetermination,asymmetricvectorautoregressivemodel,financialcrowdingout
JELCODES:E62,C32,H6
2
INTRODUCTION
InthecontextofemergingeconomiessuchasIndia,persistentfiscalimbalancesareoften
seenasconstrainingtheeffectivenessofmonetarypolicyinsteeringinterestrates,owingtotheriskoffinancialcrowdingout.However,thehighinterestratessetbycentralbankscanaffectpublicdebtmanagement,makingdebtservicingcostlier.Therefore,thesettingofbothmonetaryandfiscalpoliciesneedstobereassessedwithinacomprehensiveframeworkof
soundandstablefiscalbalancesoverthemediumtermfortheeconomicgrowthrecovery
process(AuerbachandKotlikoff1987;Auerbach2003;Blanchard2019).ThisisespeciallysignificantbecausefiscalpolicyhasremainedaccommodativeinIndiawithafocusonhighcapitalexpenditure(CaPex)investmentforeconomicgrowthrecovery.
Thereturnoffiscaldominanceiscrucial,especiallywhentheimpactofmonetarypolicyongrowthisconstrained,asitprimarilyfocusesonpricestabilityasthesinglemandateof
centralbanks—asperthenewmonetarypolicyframeworkinIndia.HighdeficitsanddebtinIndiahavecreateddebatesregardingfiscalrisksfrommaintaininganaccommodative
fiscalstance.However,Indiahasfollowedafiscalglidepathcautiously,linkinghigh
deficitstocapexformationintheeconomy.Creditratingagenciesareworriedabouthigh
deficitsduetopotentialmacroeconomicconsequences,primarilytheimpactoninterestratemanagement.However,creditratingagenciesarebecomingincreasinglyconfidentinthe
insignificantlinkbetweendeficitsandinterestrates,especiallywhentheReserveBankofIndia(RBI)determinesinterestratesbasedonarules-based,inflation-targetingframework.ThetimelyfiscaldeficitinIndiaisarticulatedinapositivemanner,bylinkingittocapex
formationforthegrowthrecoveryprocess.ThispapercontributestotheempiricalevidencefromIndia,furthersubstantiatingthatthetimelyfiscaldeficitisnottheculpritbehindrisinginterestrates,anditiscrucialtokeepfiscalpolicyaccommodativetothecapexandgrowthrecoveryprocess.
Usinghigh-frequencydatamodels,thepaperanalyzesthesecondlevelofcrowdingout—
financialcrowdingout—inthepost-pandemicperiod.AgainstthebackdropofaderegulatedfinancialregimeinIndia,weanalyzethemacroeconomicchannelsinwhichthefinancial
3
crowdingoutisoperated.Untilthemid-1990s,therateofinterestwasadministeredinIndia,andremainednon-varyingforalongperiod.Thepost-pandemicmonetarypolicystanceofinterestratedetermination,theperiodofaccommodativestance,andthesubsequent
withdrawalofaccommodativestance—willbeanalyzedinthenextpaper,usinghigh-frequencydatamodels.
1.THEANALYTICALFRAMEWORK
FollowingChakraborty(2016),theanalyticalframeworkforthestudyisderivedfromanextendedversionofSargent’s(1969)model,whichisflexibleenoughtoincorporatethe
macroeconomiclinkthatmayoperateinthedeterminationofinterestrates(Chakraborty
2016).Sargent(1969)expressedthenominalrateofinterestasacombinationofthree
components:theequilibratingrateofinterest,thespreadbetweenmarketrateofinterestandtheequilibratingrealrateofinterestandthespreadbetweennominalrateofinterestand
marketrateofinterest.Itcanbeexpressedasfollows:
rn(t)=re(t)+[rm(t)?re(t)]+[rn(t)?rm(t)](1)
Inequation(1),rn(t)isthenominalrateofinterest,re(t)istherealrateofinterestwhichequilibratesdesiredsavingsanddesiredinvestment;rm(t)isthenominalrateofinterestadjustedfortheexpectedrateofinflation.Eachofthethreespecificcomponentsis
determinedinturnbyspecificmacroeconomicvariables.
Thelogicalnextstepistoidentifythedeterminantsofeachofthethreetermsinequation
(1).But,astheobjectiveofourstudywasnottotestthevalidityofalternativeparadigmsofconnectionbetweendeficitandrateofinterestacrosscountriesbuttodistinguish
betweentheshort-andlong-termimpactsofdeficitsontherateofinterest,wehavenotdrawnheavilyonthederivationsofthedeterminantsofthemodel.Rather,weimprovisethespecificationaccordingtoourpurposetoundertakethefinancialcrowdingoutinthe
4
contextofIndia,irrespectiveoftheparadigm-specificdetailsandthedichotomyoftransitoryandpermanenteffectsofdeficitsonrateofinterest.
Oneofthesignificantdeterminantsofthefirstterm,re(t),whichistherealrateofinterestthatequilibratesdesiredsavingsanddesiredinvestment,isthedeficitofthegovernment.The
otherdeterminantsofequation(1)intheGupta-Moazzamimodelconstitutedthe
governmentconsumptionexpenditure,thenationalincome,privateconsumption
expenditure,privatesavings,etc.—allofwhichweomitinourspecificationdueto
multicollinearityproblems.Moreover,theseexplanatoryvariablesarenotrequiredforouranalysisaswehavenottestedthevalidityofeachofthealternativeparadigmsoffiscal
deficitandrateofinterestinthecontextofIndia;ourprimeconcernwas,instead,toassesstheroleofthefiscaldeficitontherateofinteresttounderstandthetransmissionchannelofthecrowding-outphenomenon(Chakraborty2016).
FollowingChakraborty(2016),thedeterminantofthesecondterm,[rm(t)-re(t)],istakenasthegrowthrateofhigh-poweredmoney.Intheopeneconomymodel,capitalflowsalso
determinethespreadbetweenthemarketrateandtheequilibriumrealrateofinterest,whichisbeyondthescopeofthepresentpaper.Therealexchangeratecanalsobeinsertedinto
equation(3)tocapturetheeffectontheinterestrate,inanopeneconomymacromodel—ascopeforfutureresearch.Inthepresentmodel,weconfineouranalysistohigh-powered
money(HPM),whosecomponentsareinclusiveofnet-RBIcredittogovernmentandnetFOREXreserves.
re(t)=α+β1(deft)+μt(2)
Assuminglinearity,wethushave:
rm(t)?re(t)=λ+β2(ΔM3)t+β3(Kr)t+δt(3)
Where,(ΔM3)t=changesinhighpoweredmoney.
5
Thelasttermofequation(1)isassumedtodependlinearlyandpositivelyontheinflationaryexpectations.
rn(t)?rm(t)=θ+β4(πte)+Dt(4)
Whereπte=ExpectedRateofInflation.
Nowbysubstitutingequations(2),(3),and(4)intoequation(1),wegetequation(5)
rn(t)=φ+β1(deft)+β2(ΔM3)t+β3(Kr)t+β4(πte)+①t(5)
Accordingtoequation(5),therateofinterestisafunctionoffiscaldeficits,changesinhigh-poweredmoney,capitalflows,andexpectedinflation.
2.INTERPRETINGDATA
ThenewmonetarypolicyframeworkwasintroducedinIndiainFebruary2016,withan
inflation-targetingframework.SinceMay2020,theRBIhaskeptthepolicystance
“accommodative,”foreconomicfirefightingduringthepandemicperiod.BetweenMay
2020andMay2022,RBIhadkeptthereporateconstantat4percent.SinceMay2022,
theRBIhasincreasedthereporateandhasincreasedtherateby250basispoints(bps)to6.5percentbyFebruary2023.SinceFebruary2023,theMonetaryPolicyCommittee
(MPC)keptthereporateunchangedat6.5percentinallthepolicyreviewmeetings.TheRBI’sdecisiontotransitiontoa“neutralstance”isaboldone,givingequalimportancetogrowthandinflation.
Thecentralbankhasemphasizedthesuccessofthe“newmonetaryframework”
envisionedforIndiainFebruary2016,basedonUrjitPatelCommitteerecommendations.Thenewmonetarypolicyframeworkenvisages“pricestability”asthesinglemandateoftheRBI,throughtheflexibleinflationtargetingframework.Aspertheflexibleinflation
6
target(FIT)frameworkinIndia,anominalanchorof4percentCPIinflationwasdecided,withinabandofplusorminus2percent.
TheMPCismindfulofnegativeinterestrates,iftheinflationaryexpectationsarehigherthanthenominalinterestrate.Theirdecisionthusreflectstherealitythatasudden
reductioninthepolicyratesatthismomentisnotfeasiblegiventhegeo-political
uncertainties.TheRBIGovernorhasemphasised“centralbankindependence”—intermsof“operationalindependence”—recallingthedecisionin2016toconstitutetheMPC
withinternalandexternalmembers,insteadoftheRBIGovernorsingularlymaking
decisionsonthepolicyrates.The“operationalindependence”allowstheMPCmemberstotakeanindependentstanceregardingthepolicyratesbasedontheirvotingpowers.InthelatestMPCmeeting,aunanimousdecisionfora“neutral”policystancewastaken.Amajorityoffiveofsixmembersvotedtokeepthepolicyreporateunchangedat6.50
percent.
Themonetarypolicycorridorremains“symmetrical,”withlowerandupperboundsofthecorridorequidistantfromthereporate.ThelowerboundofthecorridoristheStandard
DepositFacility(SDF)rate,therate(keptat6.25percent)atwhichtheRBIabsorbsliquidityfrombanks(byacceptinguncollateralizeddeposits)onan“overnight”basis.
TheupperboundofthecorridoristheMarginalStandingFacility(MSF),whichiskeptat6.75percent.TheMarginalStandingFacility(MSF)rateistherateatwhichbankscan
borrow“overnight”fromtheRBI.ThesearetheLiquidityAdjustmentFacility(LAF)mechanismtoolsoftheRBI,throughwhichbanksborroworlendmoney.
Giventhevolatilityintheglobalfinancialmarketsandthedownwardrisksfromthegeo-politicaluncertainties,therealGDPgrowthforQ1:2025–26isprojectedat7.3percent.
TheMPChasprojectedtherealGDPgrowthfor2024–25tobeat7.2percent,withQ2at7.0percent;Q3at7.4percent;andQ4at7.4percent.TheCPIinflationfor2024–25is
projectedat4.5percent,withQ2at4.1percent;Q3at4.8percent;andQ4at4.2percent.CPIinflationforQ1:2025–26isprojectedat4.3percent.TheRBI'sgrowthandinflation
7
outlookhighlightsglobalresilience,despitegeopoliticalrisks
.1
Table1explainsthe
structureofvariousinterestratesinIndiaandthemacro-monetaryratiosincludingCRRandSLR.
Thevariablesincludedinthestudyconsistoftime-seriesdatawithamonthlyfrequencyfromJanuary2020toJuly2023.Allthedatausedinthestudyaresourcedfromthe
ReserveBankofIndiadatabase.Aspertherequisiteofthetheoreticalmodel,the
dependentvariablesselectedforthestudyincludetheyieldof10-yearand5-yearGSecs,whichconstitutethelong-terminterestrates,andtheyieldof3-yearGSecsand91-day
TreasuryBills,whichconstitutetheshort-terminterestrates.Theindependentvariablesincludeinflationandexpectedinflation,derivedfromtheConsumerPriceIndex(CPI),theoutputgapderivedfromtheIndexofIndustrialProduction(IIP),thecapitalflows,fiscaldeficit,andthemoneysupplycapturedthroughbroadmoney.Thefallininterestratesofboththelong-andshort-termgovernmentsecurities(Gsecs)wasevidentduringthisperiod(Figures1and2).
Figure1:Long-terminterestrates(Jan2020-July2023)
NominalRates(%)
8
7
6
5
4
3
2
1
0
2
1.5
1
0.5
0
-0.5-1
-1.5
RealRates(%)
2020M01
2020M03
2020M05
2020M07
2020M09
2020M11
2021M01
2021M03
2021M05
2021M07
2021M09
2021M11
2022M01
2022M03
2022M05
2022M07
2022M09
2022M11
2023M01
2023M03
2023M05
2023M07
10y_nominal5y_Nominal10y_real5y_Real
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
1
ReserveBankofIndia-PressReleases(.in)
8
Figure2:Short-terminterestrates(Jan2020-July2023)
2
1
0
-1
-2
-3
-4
8
7
NominalRates(%)
RealRates(%)
6
5
4
3
2
1
2020M01
2020M03
2020M05
2020M07
2020M09
2020M11
2021M01
2021M03
2021M05
2021M07
2021M09
2021M11
2022M01
2022M03
2022M05
2022M07
2022M09
2022M11
2023M01
2023M03
2023M05
2023M07
0
3y_nominal91tbill_Nominal3y_real91tb_Real
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
TheMonetaryPolicyCommittee(MPC)unanimouslydecidedtokeepthepolicyrepo
ratesunchangedwhileitwasdeemednecessarytoreviveandsustaintheeconomic
growthatthattime.Allpolicyrateswerekeptatmoderatelevelstofacilitatetherecoveryoftheeconomy(Figure3).Unliketheadvancedeconomieswhichreducedthepolicy
ratesclosertothezero-bound,theRBIdidnotlowerthepolicyreporatesbelowthe
targetedinflationrateof4percent.Theseratecutswerecomplementedbyliquidity
infusionmeasuresaddingtothearrayofbothconventionalandunconventionalmeasuresaimedatboostinginvestorconfidenceand,ultimately,revivingtheeconomy.Variable
RateReverseRepo(VRRR)wasfollowedtomigratethesurplusliquidityfromshort-
termperiodstolong-termperiods.Furthermodulationoflong-termGSecyieldswas
carriedoutthroughOperationTwist,involvingthesimultaneoussaleofshort-andlong-termGsecs,loweringtheinterestratesofinstrumentsbenchmarkedtoGSecs(Das2023).
9
Figure3:MonetaryPolicyRates(January2020-July2023)
6.5
4.5
2.5
2020M01ii
2020M03ii
2020M05i
2020M07ii
2020M09
2020M11
2021M01i
2021M03i
2021M05i
2021M07i
2021M09
2021M11
2022M01i
2022M03i
2022M05
2022M07
2022M09
2022M11
2023M01i
2023M03
2023M05
2023M07
callmoneyreporev_repo
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
ThedataoninflationaretakenastheConsumerPriceIndex(CPI),whichistransformedintotheex-anterealrateofinterest,followingFischer’sequation(seeCorreiaetal.1995;Chakraborty2012;Chakraborty2024),wheretheexpectedinflationiscomputedusing
theHodrick-Prescottfilter.Inflationinthepre-pandemicperiodhoveredaround7percentinJanuary2020drivenbyrisingfoodprices,beforefallingbelow6percentinMarch
2020.Thelockdownsandsupplychaindisruptionsresultedinaspikeininflationtomorethan7.5percent.TheinflationlevelsfromJanuary2020toJuly2023reflectaperiodofeconomicturbulenceandrecoveryasdepictedinFigure4.
Figure4:ActualInflationandExpectedInflationDerivedusingHPFilter
7.5
5.5
3.5
2020M01
2020M03
2020M05
2020M07
2020M09
2020M11
2021M01
2021M03
2021M05
2021M07
2021M09
2021M11
2022M01
2022M03
2022M05
2022M07
2022M09
2022M11
2023M01
2023M03
2023M05
2023M07
ExpectedInflationActualInflation
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
10
Fiscaldeficit—inregardstothebroaderpolicydebateaboutitsimpactoninterestrates—isconsideredanimportantvariabledetermininginterestrates.Figure5capturesthe
monthlyprogressionoffiscaldeficitduringthepandemicperiodandthroughthe
recoveryphase.Thepandemicperiodwitnessedasurgeinthefiscaldeficitduetothedisruptiveeffectsofthenationwidelockdownandleadingtoaseverecontractionineconomicactivityand,atthesametime,theallocationofresourcestowardmountinghealthexpenditures.Thepandemic-inducedchallengeswereaddressedthroughwell-calibratedfiscalexpansionduringtherecoveryperiod.
Figure5:MonthlyGrossFiscalDeficit
InRupeesCrore
450000
250000
50000
-150000
2020M01ii
2020M03i
2020M05i
2020M07i
2020M09
2020M11i
2021M01i
2021M03i
2021M05
2021M07
2021M09ii
2021M11
ii
2022M01i
2022M03ii
2022M05i
2022M07i
2022M09i
2022M11i
2023M01
2023M03
2023M05
2023M07
Source:theauthors’calculationfromBasicdata—ReserveBankofIndiaHandbookofStatistics(2024)Thepaceofeconomicactivityisgaugedbytheoutputgap,derivedfromtheseasonallyadjustedIndexofIndustrialProduction(IIP).Here,theoutputgapwhichdepictsthe
transitorydeviationsfrompotentialoutputisderivedas:
[((AcutalIIp—potentialoutput)/potentialoutput)*100)]
ThepotentialoutputisderivedusingtheHodrick-Prescottfilter.ThemajoradvantageoftheHodrick-Prescottfilteristhatitallowstheoutputgaptobestationaryacrossarangeofsmoothingvalueswhileaccommodatingthechangesintrendovertime(deBrouwer1998).TheplotofmonthlyIIPandtheoutputgapisdepictedinFigure6.
Figure6:IIPandOutputGapDerivedUsingHPFilter
11
30
20
10
0
-10
-20
-30
-40
-50
-60
160
140
120
100
80
60
40
20
0
IIPIIPOutputGap
Source:BytheauthorsfromBasicdata—ReserveBankofIndiaHandbookofStatistics(2024)
Thecapitalflowsintotheeconomyarecapturedbythenetforeignportfolioinvestments.Indiaexperiencedasubstantialoutflowofnetportfolioinvestmentsinthewakeofthe
pandemic(Figure7)aswellasin2022,drivenbyaglobaltighteningoffinancial
conditions(GoelandNovikova2023).Amidstthevolatilecapitalflowsduringthe
pandemic,theRBIpursuedanaccommodativepolicyoflowerinterestratesinordertobolstereconomicrecovery.
Figure7:MonthlyNetPortfolioInvestments
14000
9000
InMillionUSD
4000
2020M01
2020M03
2020M05
2020M07
2020M09
2020M11
2021M01
2021M03
2021M05
2021M07
2021M09
2021M11
2022M01
2022M03
2022M05
2022M07
2022M09
2022M11
2023M01
2023M03
2023M05
2023M07
-1000
-6000
-11000
-16000
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
12
ThetrendsofmoneysupplyinIndiaarecapturedbythebroadmoney(M3)andthehigh-poweredmoney(M0)inFigure7.Empiricalliteratureshowsthatbroadmoneyis
negativelyassociatedwithlong-terminterestrates,whileitexhibitsapositive
relationshipwithshort-terminterestrates(seeVinod,Chakraborty,andKarun2016).
Figures8and9presentthetrajectoriesofM3andM0duringthereferenceperiodofthestudy.ThepresentanalysisconsidersM3asoneofthedeterminantsofinterestrates.
PriortoestimatingtheARDLmodels,Figures10-21encapsulatethebivariate
scatterplots,whichvisuallyrepresentthestylizedfactsoftheplausibledirectionofrelationshipbetweenthevariables.
Figure8:TrendsinBroadMoney(M3)
24000000
23000000
inRupeescrore
22000000
21000000
20000000
19000000
18000000
17000000
16000000
15000000
M3
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
13
Figure9:TrendsinHigh-PoweredMoney(M0)
5000000
4500000
inRupeescrore
4000000
3500000
3000000
2500000
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
Figure10:ScatterPlotof10YGSECandExpectedInflation
10YGSEC
8
7.5
7
6.5
6
5.5
R2=0.
0406
4.004.505.005.506.006.507.007.508.00
Inflation
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
14
Figure11:ScatterPlotof5YGSECandExpectedInflation
5YGSEC
8
7
6
5
4
R2=0.
0391
●
4.004.505.005.506.006.507.007.508.00
Inflation
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
Figure12:ScatterPlotof3YGSECandExpectedInflation
3YGSEC
8
7.5
7
6.5
6
5.5
5
4.5
4
R2=0
0346
.
4.004.505.005.506.006.507.007.508.00
Inflation
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
15
Figure13:ScatterPlotof91TreasuryBillRateandExpectedInflation
91TB
8
7
6
5
4
3
2
R2=0.
0089
4.004.505.005.506.006.507.007.508.00
Inflation
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
Figure14:ScatterPlotof10YGSECandFiscalDeficit
10YGSEC
8
7.5
R2=0.0182
7
6.5
6
5.5
5
-150000-5000050000150000250000350000450000
FiscalDeficit
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
16
Figure15:ScatterPlotof5YGSECandFiscalDeficit
5Y
8
7.5
7
R2=0.0193
6.5
6
5.5
5
4.5
-200000-1000000100000200000300000400000500000
FiscalDeficit
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
Figure16:ScatterPlotof3YGSECandFiscalDeficit
3Y
4
8
7.5
7
●
6.5
R2=0.0155
6
5.5
5
4.5
-200000-1000000100000200000300000400000500000
FiscalDeficit
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
17
Figure17:ScatterPlotof91TreasuryBillRateandFiscalDeficit
91TB
0
8
7
6
5
R2=0.0097
4
3
2
1
-200000-1000000100000200000300000400000500000
FiscalDeficit
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
Figure18:ScatterPlotof10YGSECandOutputGap
10YGSEC
5
8
7.5
7
●
●
R2=2E
-05
6.5
6
●
5.5
-60-50-40-30-20-100102030
OutputGap
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
18
Figure19:ScatterPlotof5YGSECandOutputGap
5YGSEC
4.5
8
7.5
7o
6.5
●
R2=0.0004
6
5.5
●
5
-60-50-40-30-20-100102030
OutputGap
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
Figure20:ScatterPlotof3YGSECandOutputGap
3YGSEC
4
8
7.5
7
6.5
●
6
R2=0.0024
5.5
5
4.5
-60-50-40-30-20-100102030
OutputGap
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
19
Figure21:ScatterPlotof91TreasuryBillRateandOutputGap
91TB
2.5
7.5
7
6.5
●
5.5
6
5
R2=0.0006
4.5
3.5
4
●
●
3
-60-50-40-30-20-100102030
OutputGap
Source:Basicdata—ReserveBankofIndiaHandbookofStatistics(2024)
3.THEEMPIRICALAPPROACH
WeemployanARDLmodelforstudyingthetermstructureofinterestratesinIndia.Inthelong-runrateofinterestmodels,theresultsoftheboundstestrevealedforall
estimatedequationsthatthenullhypothesisofnocointegrationisrejectedatthe1
percentlevelofsignificancesincethevalueoftheFstatisticliesabovetheboundI(1)implyingtheexi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西機(jī)電職業(yè)技術(shù)學(xué)院《食品工藝學(xué)實(shí)驗(yàn)》2024-2025學(xué)年第一學(xué)期期末試卷
- 西南民族大學(xué)《單片機(jī)原理與接口技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷
- 黔南民族醫(yī)學(xué)高等專科學(xué)?!吨悄苤圃鞂?dǎo)論》2024-2025學(xué)年第一學(xué)期期末試卷
- 沈陽音樂學(xué)院《網(wǎng)頁(yè)設(shè)計(jì)(HTMLCSSJavaScript)》2024-2025學(xué)年第一學(xué)期期末試卷
- 母嬰門店管理制度
- 山西老區(qū)職業(yè)技術(shù)學(xué)院《商業(yè)銀行經(jīng)營(yíng)與管理實(shí)訓(xùn)》2024-2025學(xué)年第一學(xué)期期末試卷
- 湖南體育職業(yè)學(xué)院《統(tǒng)計(jì)軟件SAS及其應(yīng)用》2024-2025學(xué)年第一學(xué)期期末試卷
- 蘇州托普信息職業(yè)技術(shù)學(xué)院《鋼結(jié)構(gòu)基本原理A》2024-2025學(xué)年第一學(xué)期期末試卷
- 2025年婦幼保健員考試試題題庫(kù)及答案
- 2022年輻射安全與防護(hù)培訓(xùn)考試題(含答案)
- 艾梅乙反歧視培訓(xùn)課件
- 諾丁山-Notting-Hill-中英文劇本
- 智能證券投資知到章節(jié)答案智慧樹2023年哈爾濱工業(yè)大學(xué)(深圳)
- Swanson人工跖趾關(guān)節(jié)置換術(shù)
- 婚禮嘉賓坐席安排表模板
- GA 1808-2022軍工單位反恐怖防范要求
- GB/T 4745-2012紡織品防水性能的檢測(cè)和評(píng)價(jià)沾水法
- GB/T 17737.105-2018同軸通信電纜第1-105部分:電氣試驗(yàn)方法電纜介質(zhì)的耐電壓試驗(yàn)
- GB 9959.1-2001鮮、凍片豬肉
- 關(guān)于創(chuàng)新開發(fā)區(qū)管理體制機(jī)制的思考
- 北京理工大學(xué)應(yīng)用光學(xué)課件(大全)李林
評(píng)論
0/150
提交評(píng)論