




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省臨沂市蘭陵縣市級(jí)名校2026屆中考數(shù)學(xué)押題卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,經(jīng)過(guò)測(cè)量,C地在A地北偏東46°方向上,同時(shí)C地在B地北偏西63°方向上,則∠C的度數(shù)為()A.99° B.109° C.119° D.129°2.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.43.的相反數(shù)是()A. B.- C. D.-4.已知拋物線y=ax2+bx+c(a<0)與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論:①4a+2b<0;②﹣1≤a≤;③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5.圖為小明和小紅兩人的解題過(guò)程.下列敘述正確的是()計(jì)算:+A.只有小明的正確 B.只有小紅的正確C.小明、小紅都正確 D.小明、小紅都不正確6.下列計(jì)算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m37.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a48.不等式組的解集表示在數(shù)軸上正確的是()A. B. C. D.9.一次函數(shù)的圖象不經(jīng)過(guò)()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列圖形中既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,AB是⊙O的直徑,AB=2,點(diǎn)C在⊙O上,∠CAB=30°,D為的中點(diǎn),P是直徑AB上一動(dòng)點(diǎn),則PC+PD的最小值為_(kāi)_______.12.已知是方程組的解,則3a﹣b的算術(shù)平方根是_____.13.拋物線y=x2﹣2x+3的對(duì)稱軸是直線_____.14.袋中裝有6個(gè)黑球和n個(gè)白球,經(jīng)過(guò)若干次試驗(yàn),發(fā)現(xiàn)“若從袋中任摸出一個(gè)球,恰是黑球的概率為”,則這個(gè)袋中白球大約有_____個(gè).15.已知x+y=8,xy=2,則x2y+xy2=_____.16.如圖,在正方形中,對(duì)角線與相交于點(diǎn),為上一點(diǎn),,為的中點(diǎn).若的周長(zhǎng)為18,則的長(zhǎng)為_(kāi)_______.三、解答題(共8題,共72分)17.(8分)△ABC中,AB=AC,D為BC的中點(diǎn),以D為頂點(diǎn)作∠MDN=∠B.如圖(1)當(dāng)射線DN經(jīng)過(guò)點(diǎn)A時(shí),DM交AC邊于點(diǎn)E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.如圖(2),將∠MDN繞點(diǎn)D沿逆時(shí)針?lè)较蛐D(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(diǎn)(點(diǎn)E與點(diǎn)A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.在圖(2)中,若AB=AC=10,BC=12,當(dāng)△DEF的面積等于△ABC的面積的時(shí),求線段EF的長(zhǎng).18.(8分)(2013年四川綿陽(yáng)12分)如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)若E是的中點(diǎn),⊙O的半徑為1,求圖中陰影部分的面積.19.(8分)如圖,一條公路的兩側(cè)互相平行,某課外興趣小組在公路一側(cè)AE的點(diǎn)A處測(cè)得公路對(duì)面的點(diǎn)C與AE的夾角∠CAE=30°,沿著AE方向前進(jìn)15米到點(diǎn)B處測(cè)得∠CBE=45°,求公路的寬度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.73)20.(8分)在中,,以為直徑的圓交于,交于.過(guò)點(diǎn)的切線交的延長(zhǎng)線于.求證:是的切線.21.(8分)如圖,在平行四邊形ABCD中,BD是對(duì)角線,∠ADB=90°,E、F分別為邊AB、CD的中點(diǎn).(1)求證:四邊形DEBF是菱形;(2)若BE=4,∠DEB=120°,點(diǎn)M為BF的中點(diǎn),當(dāng)點(diǎn)P在BD邊上運(yùn)動(dòng)時(shí),則PF+PM的最小值為,并在圖上標(biāo)出此時(shí)點(diǎn)P的位置.22.(10分)如圖①,有兩個(gè)形狀完全相同的直角三角形ABC和EFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點(diǎn).
如圖②,若整個(gè)△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時(shí),點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1cm/s的速度在直角邊GF上向點(diǎn)F運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)F時(shí),點(diǎn)P停止運(yùn)動(dòng),△EFG也隨之停止平移.設(shè)運(yùn)動(dòng)時(shí)間為x(s),F(xiàn)G的延長(zhǎng)線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點(diǎn)P與G、F重合的情況).
(1)當(dāng)x為何值時(shí),OP∥AC;
(2)求y與x之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;
(3)是否存在某一時(shí)刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說(shuō)明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)23.(12分)[閱讀]我們定義:如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對(duì)應(yīng)邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對(duì)應(yīng)邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長(zhǎng)為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P經(jīng)過(guò)的路程為s.當(dāng)β=45°時(shí),若△APQ是“中邊三角形”,試求的值.24.如圖,在?ABCD中,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),點(diǎn)E是邊CD的中點(diǎn),點(diǎn)F在BC的延長(zhǎng)線上,且CF=BC,求證:四邊形OCFE是平行四邊形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
方向角是從正北或正南方向到目標(biāo)方向所形成的小于90°的角,根據(jù)平行線的性質(zhì)求得∠ACF與∠BCF的度數(shù),∠ACF與∠BCF的和即為∠C的度數(shù).【詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質(zhì)可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【點(diǎn)睛】本題考查了方位角和平行線的性質(zhì),熟練掌握方位角的概念和平行線的性質(zhì)是解題的關(guān)鍵.2、C【解析】
由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.3、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.4、C【解析】
①由拋物線的頂點(diǎn)橫坐標(biāo)可得出b=-2a,進(jìn)而可得出4a+2b=0,結(jié)論①錯(cuò)誤;
②利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征結(jié)合b=-2a可得出a=-,再結(jié)合拋物線與y軸交點(diǎn)的位置即可得出-1≤a≤-,結(jié)論②正確;
③由拋物線的頂點(diǎn)坐標(biāo)及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進(jìn)而可得出對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;
④由拋物線的頂點(diǎn)坐標(biāo)可得出拋物線y=ax2+bx+c與直線y=n只有一個(gè)交點(diǎn),將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),進(jìn)而可得出關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,結(jié)論①錯(cuò)誤;
②∵拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵拋物線y=ax2+bx+c與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),
∴2≤c≤3,
∴-1≤a≤-,結(jié)論②正確;
③∵a<0,頂點(diǎn)坐標(biāo)為(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;
④∵拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,n),
∴拋物線y=ax2+bx+c與直線y=n只有一個(gè)交點(diǎn),
又∵a<0,
∴拋物線開(kāi)口向下,
∴拋物線y=ax2+bx+c與直線y=n-1有兩個(gè)交點(diǎn),
∴關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合④正確.
故選C.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點(diǎn)以及二次函數(shù)的性質(zhì),觀察函數(shù)圖象,逐一分析四個(gè)結(jié)論的正誤是解題的關(guān)鍵.5、D【解析】
直接利用分式的加減運(yùn)算法則計(jì)算得出答案.【詳解】解:=﹣+=﹣+==,故小明、小紅都不正確.故選:D.【點(diǎn)睛】此題主要考查了分式的加減運(yùn)算,正確進(jìn)行通分運(yùn)算是解題關(guān)鍵.6、C【解析】
根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項(xiàng),系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的乘法,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對(duì)各選項(xiàng)計(jì)算后利用排除法求解.【詳解】解:A、2m與3n不是同類項(xiàng),不能合并,故錯(cuò)誤;B、m2?m3=m5,故錯(cuò)誤;C、正確;D、(-m)3=-m3,故錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查同底數(shù)冪的除法,合并同類項(xiàng),同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準(zhǔn)法則才能做題.7、D【解析】
各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.8、C【解析】
根據(jù)題意先解出的解集是,把此解集表示在數(shù)軸上要注意表示時(shí)要注意起始標(biāo)記為空心圓圈,方向向右;表示時(shí)要注意方向向左,起始的標(biāo)記為實(shí)心圓點(diǎn),綜上所述C的表示符合這些條件.故應(yīng)選C.9、B【解析】
由二次函數(shù),可得函數(shù)圖像經(jīng)過(guò)一、三、四象限,所以不經(jīng)過(guò)第二象限【詳解】解:∵,∴函數(shù)圖象一定經(jīng)過(guò)一、三象限;又∵,函數(shù)與y軸交于y軸負(fù)半軸,
∴函數(shù)經(jīng)過(guò)一、三、四象限,不經(jīng)過(guò)第二象限故選B【點(diǎn)睛】此題考查一次函數(shù)的性質(zhì),要熟記一次函數(shù)的k、b對(duì)函數(shù)圖象位置的影響10、B【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念,軸對(duì)稱圖形兩部分沿對(duì)稱軸折疊后可重合;中心對(duì)稱圖形是圖形沿對(duì)稱中心旋轉(zhuǎn)180度后與原圖重合.【詳解】A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,不符合題意;B、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,符合題意;C、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,不符合題意;D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意.故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】
作出D關(guān)于AB的對(duì)稱點(diǎn)D’,則PC+PD的最小值就是CD’的長(zhǎng)度,在△COD'中根據(jù)邊角關(guān)系即可求解.【詳解】解:如圖:作出D關(guān)于AB的對(duì)稱點(diǎn)D’,連接OC,OD',CD'.又∵點(diǎn)C在⊙O上,∠CAB=30°,D為弧BC的中點(diǎn),即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點(diǎn)睛】本題考查了軸對(duì)稱-最短路線問(wèn)題,勾股定理,垂徑定理,正確作出輔助線是解題的關(guān)鍵.12、2.【解析】
靈活運(yùn)用方程的性質(zhì)求解即可?!驹斀狻拷猓河墒欠匠探M的解,可得滿足方程組,由①+②的,3x-y=8,即可3a-b=8,故3a﹣b的算術(shù)平方根是,故答案:【點(diǎn)睛】本題主要考查二元一次方程組的性質(zhì)及其解法。13、x=1【解析】
把解析式化為頂點(diǎn)式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對(duì)稱軸是直線x=1,故答案為x=1.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點(diǎn)式是解題的關(guān)鍵,即在y=a(x-h)2+k中,對(duì)稱軸為x=h,頂點(diǎn)坐標(biāo)為(h,k).14、1【解析】試題解析:∵袋中裝有6個(gè)黑球和n個(gè)白球,
∴袋中一共有球(6+n)個(gè),
∵從中任摸一個(gè)球,恰好是黑球的概率為,
∴,
解得:n=1.
故答案為1.15、1【解析】
將所求式子提取xy分解因式后,把x+y與xy的值代入計(jì)算,即可得到所求式子的值.【詳解】∵x+y=8,xy=2,
∴x2y+xy2=xy(x+y)=2×8=1.
故答案為:1.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是因式分解的應(yīng)用,解題關(guān)鍵是將所求式子分解因式.16、【解析】
先根據(jù)直角三角形的性質(zhì)求出DE的長(zhǎng),再由勾股定理得出CD的長(zhǎng),進(jìn)而可得出BE的長(zhǎng),由三角形中位線定理即可得出結(jié)論.【詳解】解:∵四邊形是正方形,∴,,.在中,為的中點(diǎn),∴.∵的周長(zhǎng)為18,,∴,∴.在中,根據(jù)勾股定理,得,∴,∴.在中,∵,為的中點(diǎn),又∵為的中位線,∴.故答案為:.【點(diǎn)睛】本題考查的是正方形的性質(zhì),涉及到直角三角形的性質(zhì)、三角形中位線定理等知識(shí),難度適中.三、解答題(共8題,共72分)17、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見(jiàn)解析;(3)4.【解析】
(1)根據(jù)等腰三角形的性質(zhì)以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質(zhì)得出,從而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面積等于△ABC的面積的,求出DH的長(zhǎng),從而利用S△DEF的值求出EF即可【詳解】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,證明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)連接AD,過(guò)D點(diǎn)作DG⊥EF,DH⊥BF,垂足分別為G,H.∵AB=AC,D是BC的中點(diǎn),∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=?BC?AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵?AD?BD=?AB?DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【點(diǎn)睛】本題考查了和相似有關(guān)的綜合性題目,用到的知識(shí)點(diǎn)有三角形相似的判定和性質(zhì)、等腰三角形的性質(zhì)以及勾股定理的運(yùn)用,靈活運(yùn)用相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵,解答時(shí),要仔細(xì)觀察圖形、選擇合適的判定方法,注意數(shù)形結(jié)合思想的運(yùn)用.18、解:(1)CD與⊙O相切.理由如下:∵AC為∠DAB的平分線,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半徑,∴CD與⊙O相切.(2)如圖,連接EB,由AB為直徑,得到∠AEB=90°,∴EB∥CD,F(xiàn)為EB的中點(diǎn).∴OF為△ABE的中位線.∴OF=AE=,即CF=DE=.在Rt△OBF中,根據(jù)勾股定理得:EF=FB=DC=.∵E是的中點(diǎn),∴=,∴AE=EC.∴S弓形AE=S弓形EC.∴S陰影=S△DEC=××=.【解析】(1)CD與圓O相切,理由為:由AC為角平分線得到一對(duì)角相等,再由OA=OC,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到一對(duì)內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行得到OC與AD平行,根據(jù)AD垂直于CD,得到OC垂直于CD,即可得證.(2)根據(jù)E為弧AC的中點(diǎn),得到弧AE=弧EC,利用等弧對(duì)等弦得到AE=EC,可得出弓形AE與弓形EC面積相等,陰影部分面積拼接為直角三角形DEC的面積,求出即可.考點(diǎn):角平分線定義,等腰三角形的性質(zhì),平行的判定和性質(zhì),切線的判定,圓周角定理,三角形中位線定理,勾股定理,扇形面積的計(jì)算,轉(zhuǎn)換思想的應(yīng)用.19、公路的寬為20.5米.【解析】
作CD⊥AE,設(shè)CD=x米,由∠CBD=45°知BD=CD=x,根據(jù)tan∠CAD=,可得=,解之即可.【詳解】解:如圖,過(guò)點(diǎn)C作CD⊥AE于點(diǎn)D,設(shè)公路的寬CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的寬為20.5米.【點(diǎn)睛】本題考查了直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)仰角構(gòu)造直角三角形,利用三角函數(shù)解直角三角形.20、證明見(jiàn)解析.【解析】
連接OE,由OB=OD和AB=AC可得,則OF∥AC,可得,由圓周角定理和等量代換可得,由SAS證得,從而得到,即可證得結(jié)論.【詳解】證明:如圖,連接,∵,∴,∵,∴,∴,∴,∴∵∴,則,∴,∴,即,在和中,∵,∴,∴∵是的切線,則,∴,∴,則,∴是的切線.【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì)、切線的性質(zhì)和判定、圓周角定理和全等三角形的判定與性質(zhì),熟練掌握?qǐng)A周角定理和全等三角形的判定與性質(zhì)是解題的關(guān)鍵.21、(1)詳見(jiàn)解析;(2).【解析】
(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半,以及平行四邊形的對(duì)邊相等證明四邊形DEBF的四邊相等即可證得;(2)連接EM,EM與BD的交點(diǎn)就是P,F(xiàn)F+PM的最小值就是EM的長(zhǎng),證明△BEF是等邊三角形,利用三角函數(shù)求解.【詳解】(1)∵平行四邊形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E時(shí)AB的中點(diǎn),∴DE=AB=AE=BE.同理,BF=DF.∵平行四邊形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四邊形DEBF是菱形;(2)連接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等邊三角形.∵M(jìn)是BF的中點(diǎn),∴EM⊥BF.則EM=BE?sin60°=4×=2.即PF+PM的最小值是2.故答案為:2.【點(diǎn)睛】本題考查了菱形的判定與性質(zhì)以及圖形的對(duì)稱,根據(jù)菱形的對(duì)稱性,理解PF+PM的最小值就是EM的長(zhǎng)是關(guān)鍵.22、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:1.【解析】
(1)由于O是EF中點(diǎn),因此當(dāng)P為FG中點(diǎn)時(shí),OP∥EG∥AC,據(jù)此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來(lái)得出四邊形AHPO的面積.三角形AHF中,AH的長(zhǎng)可用AF的長(zhǎng)和∠FAH的余弦值求出,同理可求出FH的表達(dá)式(也可用相似三角形來(lái)得出AH、FH的長(zhǎng)).三角形OFP中,可過(guò)O作OD⊥FP于D,PF的長(zhǎng)易知,而OD的長(zhǎng),可根據(jù)OF的長(zhǎng)和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關(guān)系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽R(shí)t△ABC∴,即,∴FG==3cm∵當(dāng)P為FG的中點(diǎn)時(shí),OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當(dāng)x為1.5s時(shí),OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),F(xiàn)H=(x+5)過(guò)點(diǎn)O作OD⊥FP,垂足為D∵點(diǎn)O為EF中點(diǎn)∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設(shè)存在某一時(shí)刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當(dāng)x=(s)時(shí),四邊形OAHP面積與△ABC面積的比為13:1.【點(diǎn)睛】本題是比較常規(guī)的動(dòng)態(tài)幾何壓軸題,第1小題運(yùn)用相似形的知識(shí)容易解決,第2小題同樣是用相似三角形建立起函數(shù)解析式,要說(shuō)的是本題中說(shuō)明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數(shù)解析式不可分離的一部分,無(wú)論命題者是否交待了都必須寫,第3小題只要根據(jù)函數(shù)解析式列個(gè)方程就能解決.23、tanA=;綜上所述,當(dāng)β=45°時(shí),若△APQ是“中邊三角形”,的值為或.【解析】
(1)由AC和BD是“對(duì)應(yīng)邊”,可得AC=BD,設(shè)AC=2x,則CD=x,BD=2x,可得∴BC=x,可得tanA===(2)當(dāng)點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年版?zhèn)€人藝術(shù)品投資保障與擔(dān)保合作協(xié)議
- 2025年智能不銹鋼門窗定制與安裝服務(wù)合同
- 2025年學(xué)校綜合樓裝修工程違約賠償標(biāo)準(zhǔn)合同樣本
- 2025年度5G通信模塊及解決方案采購(gòu)合作協(xié)議
- 2025年北京智能家電研發(fā)與定制化服務(wù)合作協(xié)議
- 2025年度高標(biāo)準(zhǔn)綠色節(jié)能住宅小區(qū)物業(yè)運(yùn)營(yíng)管理服務(wù)承包合同
- 2025年環(huán)保型建筑材料采購(gòu)合同環(huán)境責(zé)任承諾書
- 2025年度餐飲廢棄物收運(yùn)及資源化利用合作協(xié)議
- 2025年度新型物流倉(cāng)儲(chǔ)設(shè)備采購(gòu)與服務(wù)合同
- 2025年綠色節(jié)能城市防洪堤壩施工與運(yùn)營(yíng)管理合同
- 2025年交管12123駕駛證學(xué)法減分及駕駛安全理論知識(shí)試題庫(kù)(附含答案)
- 2025年貴州貴陽(yáng)市水務(wù)環(huán)境集團(tuán)有限公司招聘27人筆試參考題庫(kù)附帶答案詳解(10套)
- 2025屆中國(guó)南方航空“明珠優(yōu)才管培生”全球招聘30人筆試參考題庫(kù)附帶答案詳解(10套)
- 原發(fā)性系統(tǒng)性淀粉樣變性的護(hù)理措施課件
- 《阿房宮賦》課件 統(tǒng)編版高中語(yǔ)文必修下冊(cè)
- 橋小腦角腫瘤護(hù)理查房
- 2025小學(xué)教師招聘考試試題及答案
- 2025年紀(jì)律作風(fēng)測(cè)試題及答案
- 2025江蘇蘇州昆山國(guó)創(chuàng)投資集團(tuán)有限公司第一期招聘17人筆試參考題庫(kù)附帶答案詳解版
- 安全生產(chǎn)網(wǎng)格化管理工作實(shí)施方案
- 入場(chǎng)安全教育培訓(xùn)
評(píng)論
0/150
提交評(píng)論