




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
蘇教七年級下冊期末解答題壓軸數(shù)學(xué)必考知識點試題A卷及解析一、解答題1.解讀基礎(chǔ):(1)圖1形似燕尾,我們稱之為“燕尾形”,請寫出、、、之間的關(guān)系,并說明理由;(2)圖2形似8字,我們稱之為“八字形”,請寫出、、、之間的關(guān)系,并說明理由:應(yīng)用樂園:直接運用上述兩個結(jié)論解答下列各題(3)①如圖3,在中,、分別平分和,請直接寫出和的關(guān)系;②如圖4,.(4)如圖5,與的角平分線相交于點,與的角平分線相交于點,已知,,求和的度數(shù).2.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點同時從點O出發(fā),點A沿直線m向左運動,點B沿直線n向上運動.(1)若∠BAO和∠ABO的平分線相交于點Q,在點A,B的運動過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.(2)若AP是∠BAO的鄰補角的平分線,BP是∠ABO的鄰補角的平分線,AP、BP相交于點P,AQ的延長線交PB的延長線于點C,在點A,B的運動過程中,∠P和∠C的大小是否會發(fā)生變化?若不發(fā)生變化,請求出∠P和∠C的度數(shù);若發(fā)生變化,請說明理由.3.如圖1,已知線段AB、CD相交于點O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細觀察,在圖2中有個以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.4.已知,,點為射線上一點.(1)如圖1,寫出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點在延長線上時,求證:;(3)如圖3,平分,交于點,交于點,且:,,,求的度數(shù).5.已知ABCD,點E是平面內(nèi)一點,∠CDE的角平分線與∠ABE的角平分線交于點F.(1)若點E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.6.閱讀材料:如圖1,點是直線上一點,上方的四邊形中,,延長,,探究與的數(shù)量關(guān)系,并證明.小白的想法是:“作(如圖2),通過推理可以得到,從而得出結(jié)論”.請按照小白的想法完成解答:拓展延伸:保留原題條件不變,平分,反向延長,交的平分線于點(如圖3),設(shè),請直接寫出的度數(shù)(用含的式子表示).7.已知△ABC的面積是60,請完成下列問題:(1)如圖1,若AD是△ABC的BC邊上的中線,則△ABD的面積△ACD的面積.(填“>”“<”或“=”)(2)如圖2,若CD、BE分別是△ABC的AB、AC邊上的中線,求四邊形ADOE的面積可以用如下方法:連接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=y(tǒng)由題意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程組為:,解得,通過解這個方程組可得四邊形ADOE的面積為.(3)如圖3,AD:DB=1:3,CE:AE=1:2,請你計算四邊形ADOE的面積,并說明理由.8.我們知道:光線反射時,反射光線、入射光線分別在法線兩側(cè),反射角等于入射角.如圖1,為一鏡面,為入射光線,入射點為點O,為法線(過入射點O且垂直于鏡面的直線),為反射光線,此時反射角等于入射角,由此可知等于.(1)兩平面鏡、相交于點O,一束光線從點A出發(fā),經(jīng)過平面鏡兩次反射后,恰好經(jīng)過點B.①如圖2,當(dāng)為多少度時,光線?請說明理由.②如圖3,若兩條光線、所在的直線相交于點E,延長發(fā)現(xiàn)和分別為一個內(nèi)角和一個外角的平分線,則與之間滿足的等量關(guān)系是_______.(直接寫出結(jié)果)(2)三個平面鏡、、相交于點M、N,一束光線從點A出發(fā),經(jīng)過平面鏡三次反射后,恰好經(jīng)過點E,請直接寫出、、與之間滿足的等量關(guān)系.9.已知,如圖:射線分別與直線、相交于、兩點,的角平分線與直線相交于點,射線交于點,設(shè),且.(1)________,________;直線與的位置關(guān)系是______;(2)如圖,若點是射線上任意一點,且,試找出與之間存在一個什么確定的數(shù)量關(guān)系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點逆時針方向旋轉(zhuǎn)(如圖)分別與、相交于點和點時,作的角平分線與射線相交于點,問在旋轉(zhuǎn)的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.10.(概念認(rèn)識)如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問題解決)(1)如圖②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分線BD交AC于點D,求∠BDC的度數(shù);(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰BC三分線和∠ACB鄰BC三分線,且∠BPC=140°,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點P.若∠A=m°(),∠B=54°,直接寫出∠BPC的度數(shù).(用含m的代數(shù)式表示)【參考答案】一、解答題1.(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對頂角相等即可得出結(jié)解析:(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據(jù)三角形外角等于不相鄰的兩個內(nèi)角之和即可得出結(jié)論;(2)根據(jù)三角形內(nèi)角和定理及對頂角相等即可得出結(jié)論;(3)①根據(jù)角平分線的定義及三角形內(nèi)角和定理即可得出結(jié)論;②連結(jié)BE,由(2)的結(jié)論及四邊形內(nèi)角和為360°即可得出結(jié)論;(4)根據(jù)(1)的結(jié)論、角平分線的性質(zhì)以及三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1).理由如下:如圖1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分別平分和,,.故答案為:.②連結(jié).∵,.故答案為:;(4)由(1)知,,,,,,,,,,,;.【點睛】本題考查了角平分線的性質(zhì),三角形內(nèi)角和;熟練掌握角平分線的性質(zhì),進行合理的等量代換是解題的關(guān)鍵.2.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據(jù)三角形的內(nèi)角各定理可求∠AQB的大小.第(2)題求∠P的大小,用鄰補角、角平分線、平角、直角和三角形內(nèi)角和定理等知識求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點睛】本題考查三角形內(nèi)角和定理,垂直,角平分線,平角,直角和角的和差等知識點,同時,也是一個以靜求動的一個點型題目,有益于培養(yǎng)學(xué)生的思維幾何綜合題.3.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O(shè)為交點的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O(shè)為交點的“8字形”有2個;(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.【詳解】解:(1)在圖2中有3個以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案為360°.4.(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點H解析:(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進而得到∠EAF=∠AED+∠EDG;(3)設(shè)∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根據(jù)三角形內(nèi)角和定理,得到∠EKD的度數(shù).【詳解】解:(1)∠AED=∠EAF+∠EDG.理由:如圖1,過E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)證明:如圖2,設(shè)CD與AE交于點H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可設(shè)∠EAI=∠BAI=α,則∠BAE=2α,如圖3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【點睛】本題主要考查了平行線的性質(zhì),三角形外角性質(zhì)以及三角形內(nèi)角和定理的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角,運用三角形外角性質(zhì)進行計算求解.解題時注意:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.5.(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過對的計算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過點E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時要注意作出輔助線,構(gòu)造出平行線求解.6.閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進而得到,從而,,將代入可得.(2)過H點作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)解析:閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進而得到,從而,,將代入可得.(2)過H點作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)論和CG平分∠ECD可得∠PHC=∠FCH=120°-,即可得.【詳解】解:【閱讀材料】作,,(如圖1).∵,∴.∴.∵,∴.∴.∴.∵,∴.∵,∴.∴,.∴.∵,∴.【拓展延伸】結(jié)論:.理由:如圖,作,過H點作HP∥MN,∴∠PHA=∠MAH=,由(1)得FC∥MN,∴FC∥HP,∴∠PHC=∠FCH,∵,CG平分∠ECD,∴∠ECG=20°+,∴∠FCH==180°-()-(20°+)=120°-∴∠CHA=∠PHA+∠PHC=+(120°-)=120°-即:.【點評】本題主要考查了平行線的性質(zhì)的運用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯角,運用等角的余角(補角)相等進行推導(dǎo).余角和補角計算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時注意方程思想的運用.7.(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,解析:(1)=;(2),20;(3)S四邊形ADOE=13.理由見解析.【分析】(1)利用三角形的面積公式計算即可得出結(jié)論;(2)利用題干所給解答方法解答即可;(3)連接AO,利用(2)中的方法,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=x,S△AEO=2y,利用已知條件列出方程組,解方程組即可得出結(jié)論.【詳解】解:(1)如圖1,過A作AH⊥BC于H,∵AD是△ABC的BC邊上的中線,∴BD=CD,∴,,∴S△ABD=S△ACD,故答案為:=;(2)解方程組得,∴S△AOD=S△BOD=10,∴S四邊形ADOB=S△AOD+S△AOE=10+10=20,故答案為:,20;(3)如圖3,連接AO,∵AD:DB=1:3,∴S△ADO=S△BDO,∵CE:AE=1:2,∴S△CEO=S△AEO,設(shè)S△ADO=x,S△CEO=y(tǒng),則S△BDO=3x,S△AEO=2y,由題意得:S△ABE=S△ABC=40,S△ADC=S△ABC=15,可列方程組為:,解得:,∴S四邊形ADOE=S△ADO+S△AEO=x+2y=13.【點睛】本題是一道四邊形的綜合題,主要考查了三角形的面積公式,等底同高的三角形面積相等,高相同的三角形的面積比等于底的比,二元一次方程組的解法.本題是閱讀型題目,準(zhǔn)確理解題干中的方法并正確應(yīng)用是解題的關(guān)鍵.8.(1)①90°,理由見解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=解析:(1)①90°,理由見解析;②∠MEN=2∠POQ;(2)2(∠M+∠N)-∠BCD=360°-∠BFD【分析】(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,根據(jù)∠AMN+∠BNM=180°,可得α+β=90°,再根據(jù)三角形內(nèi)角和定理進行計算即可;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,根據(jù)三角形外角性質(zhì)可得∠MEN=2(β-α),再根據(jù)三角形外角性質(zhì)可得∠POQ=β-α,進而得出∠MEN=2∠POQ;(2)分別表示出∠M,∠N,∠BCD,利用四邊形內(nèi)角和表示出∠BFD,再將∠M,∠N,∠BCD進行運算,變形得到∠BFD,即可得到關(guān)系式.【詳解】解:(1)①設(shè)∠AMP=∠NMO=α,∠BNQ=∠MNO=β,當(dāng)AM∥BN時,∠AMN+∠BNM=180°,即180°-2α+180°-2β=180°,∴180°=2(α+β),∴α+β=90°,∴△MON中,∠O=180°-∠NMO-∠MNO=180°-(α+β)=90°,∴當(dāng)∠POQ為90度時,光線AM∥NB;②設(shè)∠AMP=∠NMO=α,∠BNO=∠MNQ=β,∴∠AMN=180°-2α,∠MNE=180°-2β,∵∠AMN是△MEN的外角,∴∠MEN=∠AMN-∠MNE=(180°-2α)-(180°-2β)=2(β-α),∵∠MNQ是△MNO的外角,∴∠POQ=∠MNQ-∠NMO=β-α,∴∠MEN=2∠POQ;(2)設(shè)∠PBE=∠MBC=∠1,∠MCB=∠NCD=∠2,∠CDN=∠ADQ=∠3,可知:∠M=180°-∠1-∠2,∠N=180°-∠2-∠3,∠BCD=180°-2∠2,∵∠CBA=180°-2∠1,∠CDA=180°-2∠3,∴∠BFD=360°-∠CDA-∠CBA-∠BCD=360°-(180°-2∠1)-(180°-2∠2)-(180°-2∠3)=2(∠1+∠2+∠3)-180°又∵2(∠M+∠N)-∠BCD=2(180°-∠1-∠2+180°-∠2-∠3)-(180°-2∠2)=540°-2(∠1+∠2+∠3)=360°-[2(∠1+∠2+∠3)-180°]=360°-∠BFD∴2(∠M+∠N)-∠BCD=360°-∠BFD.【點睛】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì)以及多邊形內(nèi)角和定理的綜合應(yīng)用,解題時注意:兩直線平行,同旁內(nèi)角互補;三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.9.(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計算α和β的值,再根據(jù)內(nèi)錯角相等可證AB∥CD;(2解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計算α和β的值,再根據(jù)內(nèi)錯角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國實體書店行業(yè)發(fā)展?jié)摿εc經(jīng)營規(guī)模方向調(diào)研報告
- 2025-2030中國天然防霉劑市場深度評估及未來需求量預(yù)測報告
- 醫(yī)學(xué)教學(xué)模式創(chuàng)新與實踐
- 有聲書制作與分發(fā)平臺創(chuàng)新創(chuàng)業(yè)項目商業(yè)計劃書
- 園藝植物種子銀行創(chuàng)新創(chuàng)業(yè)項目商業(yè)計劃書
- 腫瘤患者術(shù)后健康知識宣教
- 醫(yī)學(xué)監(jiān)查流程
- 中國茶葉類型講解
- 腫瘤科患者滿意度調(diào)查
- 醫(yī)學(xué)外文課件設(shè)計與應(yīng)用
- 2026年中考英語復(fù)習(xí):初中英語課標(biāo)詞匯 80天語境背誦清單
- “蘇超”現(xiàn)象:文化破圈、城市崛起與青年力量的融合交響-2026年高考語文作文熱點話題素材積累與實戰(zhàn)訓(xùn)練
- 制作教學(xué)課件的完整步驟
- 貨運企業(yè)安全管理規(guī)范
- 生活污水管網(wǎng)改造提升工程建議書(模板)
- 常見上肢骨折護理常規(guī)
- 危險廢物突發(fā)事故應(yīng)急演練方案
- 老年衰弱護理課件
- 供應(yīng)商準(zhǔn)入管理制度及流程
- 一級建造師法律教學(xué)課件
- excel培訓(xùn)課件制作
評論
0/150
提交評論