




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Single-ShotViewSynthesisusingaMultiplexedLightField
Camera
ShamusLi
ElectricalEngineeringandComputerSciencesUniversityofCalifornia,Berkeley
TechnicalReportNo.UCB/EECS-2024-192
/Pubs/TechRpts/2024/EECS-2024-192.html
November13,2024
Copyright?2024,bytheauthor(s).
Allrightsreserved.
Permissiontomakedigitalorhardcopiesofallorpartofthisworkfor
personalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesare
notmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermission.
Single-ShotViewSynthesisusingaMultiplexedLightFieldCamera
byShamusLi
ResearchProject
SubmittedtotheDepartmentofElectricalEngineeringandComputerSciences,UniversityofCaliforniaatBerkeley,inpartialsatisfactionoftherequirementsforthedegreeofMasterofScience,PlanII.
ApprovalfortheReportandComprehensiveExamination:
Committee
ProfessorLauraWallerResearchAdvisor
11/13/24
(Date)
*******
ProfessorRenNgSecondReader
11/13/2024
(Date)
Single-ShotViewSynthesisusingaMultiplexedLightFieldCamera
by
ShamusLi
Athesissubmittedinpartialsatisfactionofthe
requirementsforthedegreeof
MasterofScience
in
ElectricalEngineeringandComputerSciences
inthe
GraduateDivision
ofthe
UniversityofCalifornia,Berkeley
Committeeincharge:
ProfessorLauraWaller,Chair
ProfessorRenNg
Spring2024
Single-ShotViewSynthesisusingaMultiplexedLightFieldCamera
Copyright2024
by
ShamusLi
1
Abstract
Single-ShotViewSynthesisusingaMultiplexedLightFieldCamera
by
ShamusLi
MasterofScienceinElectricalEngineeringandComputerSciences
UniversityofCalifornia,Berkeley
ProfessorLauraWaller,Chair
Recentadvancementsinimagingtechnologieshaveshiftedfromtraditional2Dimagecapturetomoresophisticatedmethodsthataimtocaptureadditionaldimensions—spatial,tempo-ral,etc.—ofagivenscene.Wepresentanapproachtosingle-shotviewsynthesisusingamultiplexedlight?eldcamera,wheresub-imagesaredesignedtooverlapwitheachothertoachievehigherspatialandtemporalresolutioncomparedtoconventionallight?eldimaging.Weuseasinglecapturefromouropticalsystemtoachievenovelviewsynthesis.
Oursystemcaptureslight?eldsthroughalensarraythatintentionallyoverlapsviews,en-hancingbothresolutionanddepthof?eld.Thismultiplexingapproachiscomplementedbyacalibrationprocessthatalignsvirtualcameraposes,facilitatingaccuratereconstructionwithoutrepeatedposeestimation.WemodifytheforwardmodelofGaussianSplattingtoimplicitlyrepresentandreconstructthelight?eldfromthemultiplexedmeasurements.
Wepresentsyntheticexperimentalresultsthatdemonstratethee?cacyofoursystemingeneratingwide-angle,photorealistic3Dreconstructionsofsmallscenesbothinsimulationandtherealworld,anddiscussextensionstoaphysicalsystem.Weachieveanoptical?eldofviewofmorethan70degrees,andareabletoaccuratelyreconstructmorethan120degreeswithasingleshot.Ourphysicalsystemachieves1.9rays/pixelofmultiplexing,a90%increaseinpixelinformationoveralight?eldimagingsystemwithnooverlapping,andwedemonstratehigher-qualityreconstructionsonsyntheticsceneswithupto2.5rays/pixelofmultiplexingwhencomparedtobothtraditionallight?eldimagesaswellasmonocu-larGaussianSplatting.Ourmethodrepresentsapotentialstepforwardinthepracticalapplicationofviewsynthesis,particularlyindynamicenvironmentswithfewcameras.
i
Tomyfamily.
ii
Contents
Contentsii
ListofFiguresiii
1Introduction1
1.1RelatedWork 3
2BuildingaMultiplexedLightFieldCamera7
2.1OpticalDesign 7
2.2Methods 9
3NovelViewSynthesisforMultiplexing12
3.1CameraCalibration 12
3.2GaussianSplattingOptimization 15
4ExperimentalResults17
4.1SimulationExperiments 17
4.2Real-WorldExperiments 20
5Conclusion23
Bibliography25
iii
ListofFigures
1.1Wepresentanimagingsystemforsingle-shotviewsynthesisusingamultiplexedlight?eldcamera.Thecapturedimageonthesensorconsistsofmultipleover-lappingviews.Thecaptureddataisthenprocessedthroughourviewsynthesispipelinetogeneratenovelviewsofthescene.Thesystemiscalibratedbycaptur-ingimagesthroughindividuallenslets,allowingestimationofcameraposesusing
structure-from-motiontechniques
2
2.1Exampleofcapturedimageswithopticalcrosstalk.Opticalcrosstalkoccurs
whenlightintendedforonesectionofthesensorinadvertentlyreachesthearea
designatedforanotherlens,causingundesiredimageartifacts
8
2.2Theaperturearraymitigatesopticalcrosstalkbyblockingstraylightbetweenlenslets;increasesthedepthof?eldbylimitingtheefectiveaperturesizeforeach
sub-lens;andcontrolstheamountofoverlap.Whileitdoesblockasigni?cant
amountoflight,atthemesoscalethisisnotanissue
9
2.3Eachlensletinthearrayfunctionsasanindividualcamera,capturingaslightly
diferent,overlappingperspectiveofthescene.Thissetupisanalogoustoan
arrayofcamerasthatcollectivelycaptureacomprehensivelight?eld
11
3.1COLMAPreconstructionresultshowingtheestimatedcameraposesandsparse3Dpointcloudfromcalibrationimages.Thecalibrationimagesshownarea
subsetofthe42imagesused.Thesparsepointcloudindicatestherough3D
structureofthescene
13
3.2(a-b)COLMAPfailuremodes.Duetothesymmetryofthisobject,thereexists
someambiguityinthelocationofthecameraviews,leadingtopointcloudsthat
are?attenedorcompressed.(c)showsasuccessfulreconstruction
14
4.1Performancecomparisonbetweensingle-lensandmultilenscamerasinsimulation
ontheLegoscene.Themultilenscameraconsistentlyoutperformsthesingle-lens
camera,achievinghigherPSNRvalues,particularlyaround2.0raysperpixel..18
iv
4.2Syntheticreconstructionresultswithdiferentamountsofmultiplexing:(a)and(b)showtherawcompositeimageandthereconstructionresultat1.5raysperpixel,respectively.(c)and(d)showtherawcompositeimageandthereconstruc-tionresultat2.0raysperpixel.Theimagesdemonstratethathigherlevelsof
multiplexingleadtoincreasedartifactsinthereconstructedscenes........19
4.3(a)Rawmultiplexedimagecapturedbyourlight?eldcamerasystem.Theimageshowsmultipleoverlappingviewsofthescene,eachslightlyshiftedinperspective.
(b-c)GaussianSplattingreconstructionresultsat0degreesand60degreesfromtheopticalaxis,respectively.(d)VolumetricvisualizationoftheGaussiansat
fullopacityand10%size...............................21
4.4Testviewrenderingsofthereal-worldreconstructionwithmultiplexing:(a)Re-sultswithhighmultiplexing,showingsomesmearingduetooverlappingperspec-tives.(b)Doublerenderingwithlessmultiplexing,indicatingmultipleobjectinstances.(c)Out-of-viewrendering,wherepartsofthesceneappearoutsidethe
expected?eldofview.................................22
v
Acknowledgments
Iwould?rstliketothankKristinaMonakhovaandKyrollosYannyforhelpingacuriousfreshmandiscoverthe?eldofcomputationalimagingforthe?rsttime.ItwasthoseweeklymeetingswhileIwasstuckinmyroomthathelpedmedecidethatIwantedtopursueanadvanceddegree.IwouldliketothankthewholeofWallerLabforsharinglivelydiscussionswithmeandoferingmeyourwisdomabouteverythingfromresearchtotheoutdoors.Thisworkwouldn’thavebeenpossiblewithoutsupportfromSaraFridovich-Keil,RuimingCao,andKevinZhou,whoseexpertisewasinstrumentalforachievingmyresearchgoals.WheneverIfeltlost,askingthemhasoftenbeentherightanswer.Inaddition,someoftheworkpresentedherewasdonejointlywithViTran,whoisafantasticpersontoworkalongside,andtherigouroftheirresearchismuchappreciated.IwouldliketothankProfessorRenNgforhisfeedbackonthisreportandforbeinganinspiration.Lastly,IwouldliketothankmyadvisorProfessorLauraWallerforherguidancebothinshapingmyexperimentsandinnavigatingacareerinacademia.IamextremelygratefultohavehadsuchgreatmentorshipthroughoutmytimeatBerkeley.
1
Chapter1
Introduction
Theevolutionofimagingtechnologies,fromtraditional?lm-basedcamerastomoderndigitalsensors,havebroughtaboutsigni?cantadvancesinhowwecaptureandinterprettheworldaroundus.Conventionally,camerashavebeendesignedtocapturetwo-dimensionalimages,focusingontheproductionofsharp,well-exposedphotographsthatrepresentasingleper-spectiveofascene.However,thedimensionalityoflightextendsfarbeyondthecon?nesof2Dimageplanes.Lightinteractingwiththeenvironmentcarriesinformationnotonlyaboutintensity,butalsoaboutdirection,wavelength,andtime.Aparameterizationofthisistheplenopticfunction—P(θ,φ,λ,t,Vx,Vy,Vz),whereθandφisthedirectionoflight,λisthewavelength,tistime,andVx,Vy,Vzis3Doriginofthelightray—whichrepresentseverypossibleimagefromeveryviewpointinaparticularspace-timechunk[2].Itisthereforenec-essarytomapthishigher-dimensiontoa2Dgridtocapturethislostinformation,leadingtosacri?ceseitherinspatialortemporalresolution.Theprimarypurposeofthisworkistodesignanopticalcodingtolimitthesetradeofsasmuchaspossible.
Thefocusofmyworkisonrenderingimagesfrommoreviewpointsthanwereactuallycaptured,atechniquecallednovelviewsynthesis.Thisisachievedbynotonlycapturingthe2Dintensityoflightthathitseachpixel,butalsomeasuringtheamountoflighttravellingalongeachraythatintersectsthesensor.Wecanmodelthisrayin5Dbyremovingtimeandwavelengthfromtheplenopticfunction,orin4Dasaparameterizationofalinethatintersectstwoplanes[15].
Traditionally,thisrepresentation,knownasalight?eld,wasexplicitlyrepresentedandrequiredadensegridofviewstobecaptured.RecenttechniquessuchasNeuralRadianceFields(NeRF)haverevolutionizedthe?eldbylearningimplicitscenerepresentationsthatenablehigh-qualityimagesynthesisfromnovelviewpoints[14].NeRFanditsderivativescanreconstructa3Dscenefromarelativelysparsesetofinputimagescapturedfromdiferentviewpoints.However,thecaptureoftheseviewstypicallytakesalongtimeandassumesastaticscene,heavilylimitingtheirapplicabilityindynamicenvironmentsthatchangeovertime.
Light?eldcameras,whichsimultaneouslyrecordmultipleperspectivesinonesensormeasurement,oferapotentialsolutiontothisproblem.Bycapturingbothspatialand
CHAPTER1.INTRODUCTION2
Figure1.1:Wepresentanimagingsystemforsingle-shotviewsynthesisusingamultiplexedlight?eldcamera.Thecapturedimageonthesensorconsistsofmultipleoverlappingviews.Thecaptureddataisthenprocessedthroughourviewsynthesispipelinetogeneratenovelviewsofthescene.Thesystemiscalibratedbycapturingimagesthroughindividuallenslets,allowingestimationofcameraposesusingstructure-from-motiontechniques.
angularinformationoflightrays,light?eldcamerasenablepost-capturerefocusing,depthestimation,andviewsynthesis.However,traditionallight?eldcameras—fromcameraarraystoplenopticcameras—faceafundamentaltrade-ofbetweenspatialresolutionandangularresolution.Capturingmoreangularinformationtypicallyresultsinadecreaseinspatialresolutionandviceversa.
Thisworkintroducesanovelapproachtosingle-shotviewsynthesisusingamultiplexedlight?eldcamera.Byintentionallyoverlappingtheviewscapturedbyalensarray,itispossibletoachieveahigherspace-bandwidthproductthanwouldbepossiblewithnon-overlappingmonocularviews.Thisisidealforhighlydynamicscenesinthemesoscale,makingthesystemlimitedonlybythecapabilitiesofthecamerasensor.Inaddition,by?xingtheoptics,weonlyneedtocalibratethecameraparametersoncepercamera,skippingacostlyandpotentiallyinaccurateposeestimationstepinfuturereconstructions.WemodifyGaussianSplattingtohandletrainingfromasinglemultiplexedimagesuchthatinsteadofrenderingoneimageforeachtrainingpass,werenderoneimagefromeachviewpointinthecameraandcombinethemtocreatethemultiplexedimage.Wecalibrateourcamerausingatraditionalstructure-from-motionpipeline.Wedemonstratethee?cacyofoursystemthroughbothsimulationandreal-worldexperiments.Weachieveanoptical?eldofviewofmorethan70degrees,andareabletoaccuratelyreconstructmore120degreeswithasingleshot.Ourphysicalsystemachieves1.9rays/pixelofmultiplexing,a90%increaseinpixelinformationoveralight?eldimagingsystemwithnooverlapping,andwedemonstrate
CHAPTER1.INTRODUCTION3
higher-qualityreconstructionsonsyntheticsceneswithupto2.5rays/pixelofmultiplexingwhencomparedtobothtraditionallight?eldimagesaswellasmonocularGaussianSplatting.
1.1RelatedWork
LightFieldImaging
Light?eldcameraspassivelycapture4Dspace-angleinformationinasingleshot,enabling3Dreconstructions,amongstotherapplications.Light?eldimaginghasbeenacrucialre-searchareaincomputationalphotographyandcomputervision,focusingoncapturingthefulldimensionalityoflightraysinascene.Theplenopticfunction,introducedbyAdel-sonandBergen,parameterizeslightraysbytheirposition,direction,wavelength,andtime,encapsulatingtheentiretyofvisualinformationavailableinascene[2].Unliketraditionalimagingtechniquesthatcaptureonlytheintensityoflightateachpoint,light?eldimag-ingcapturestheintensityoflightraysasafunctionofspaceandangle.Thisadditionalinformationenablescomputationalcapabilitiesnotpossiblewithconventionalcameras.
Thecorecomponentofalight?eldcameraisamicrolensarrayplacedinfrontoftheimagesensor.Eachmicrolenscaptureslightraysfromdiferentdirectionsandfocusesthemontothesensor,allowingeachpixeltoreceivelightinformationfromaspeci?cdirection.Thecapturedlight?elddatacanberepresentedasafour-dimensionalfunction,L(u,v,s,t),where(u,v)denotespatialcoordinatesand(s,t)representangularcoordinatesofthelightrays.Light?eldcamerascanbemodeledasanarrayofcameras,eachcapturingaslightlydiferentperspectiveofthescene.Consequently,thecaptureddatacomprisesaseriesofsub-images,eachrepresentingaslightlydiferentviewpoint.Thismulti-viewdataenablesrefocusinganddepthof?eldchanges,disparityanddepthcalculation,aswellas3Dreconstruction[8].
Implementationsoflight?eldcameras,suchastheplenopticcameraproposedbyAdelsonandWang[1]andnotablybyNgetal[15],useamicrolensarrayplacedinfrontofanimagesensortocapturemultipleviewsofascenefromslightlydiferentperspectivesinasingleshot.Analternativelight?eldcameradesignisacameraarray,whichallowsforfornewviewpointstobegeneratedbyinterpolatingbetweencapturedimages[27].Theseworksdemonstratedtheconceptofinterpreting2Dimagesasslicesofa4Dlight?eldfunction,facilitatinge?cientcreationanddisplayofnewviewswithoutrequiringdepthinformationorfeaturematching.
However,traditionallight?eldcamerasfacesigni?canttrade-ofsbetweenspatialandangularresolutions.Capturingmoreangularinformationtypicallyresultsinadecreaseinspatialresolutionandviceversa.Thistrade-oflimitstheapplicabilityoftraditionallight?eldcamerasinscenariosrequiringhigh-resolutionimagingandwide?eldsofview.Subse-quentworkshaveaimedtoimprovethespatialandangularresolutiontrade-ofsinherentinthesesystems.GeorgievandIntwalaproposedasystemusingahexagonalarrayoftwentylargerlensletsinordertoreducegapsbetweenlenslets[5];LumsdaineandGeorgievintro-ducedtheconceptofthefocusedplenopticcamera,whichimprovesthespatialresolution
CHAPTER1.INTRODUCTION4
bysimplyadjustingtheplacementofthemicrolensarrayrelativetothesensor[10];andPerwa?andWietzkepresenteda3Dcamerawhichachievesimproveddepthestimationwithamulti-focalmicrolensarray.Whilethesemethodsimproveupontraditionaldesigns,theydonotfullyovercometheinherenttrade-ofs.
Lensletarray-basedcaptureschemeshavealsobeenwidelyusedinmicroscopyfor3Ddepthimaging[17,22].Inparticular,FourierLightFieldMicroscopy(FLFM)hasemergedasapowerfultechniqueincomputationalmicroscopy.FLFMoperatesbyplacingamicrolensarrayattheFourierplaneoftheimagingsystem,whichcreatesathree-dimensionalshift-invariantpointspreadfunction(PSF),enablingthereconstructionofvolumetricinformationfromasingletwo-dimensional(2D)measurement.[6].Thisapproachhasbeenfurtherre?nedwithtechniqueslikeFourierDifuserscope,whichintroducesadifuserattheFourierplanetoencodeadditionalspatialinformationandimprovereconstructionquality[9].OurworkdrawsinspirationfromFLFMbutextendstheconcepttomesoscaleimagingofobjectsinthemillimetertocentimeterrange.
Themainideaoflight?eldimagingistoencodeadditionalangularinformationintothecaptureddata,whichcanthenenablesyntheticrefocusing,volumereconstruction,orneuralreconstructionfromasinglesensormeasurement.WeintroduceanopticalsystemphysicallysimilartothatproposedbyGeorgievandIntwala,butwithakeydiference:oursystemisdesignedtointentionallyoverlaptheimagesfromeachlensletontothesensor,anewidea.Byoverlappingtheviewscapturedbythelensarray,weefectivelyincreasetheamountofinformation—space-bandwithproduct—capturedwithoutsacri?cingspatialresolution,enablinghigher-resolutionandwider?eld-of-viewimaging.
NovelViewSynthesis
Novelviewsynthesisrequiresrecoveryofa3Drepresentationofanobjectorscenefrom2Dinputimages.Existingmethodsoftenutilizepointclouds[12],voxelgrids[13],orsigneddistancefunctions[16]torepresentthetarget.Theseapproachestypicallyrequirealargesetoftrainingimagesandcorrespondingcameraposeestimatestoachieveaccurateresults.Practicalapplicationsofhigh-quality3Dreconstructionsincludegenerating3Dmodelsforassetsinanimation,creatingtrainingenvironmentsforroboticssimulations,andenhancingbiologicalanalysis.
NeuralRadianceFields(NeRFs)haveemergedasapowerfultechniquefornovelviewsynthesis[14].NeRFsmodelappearanceandgeometryusingradiance?eldsthatmapspatialcoordinatesandviewdirectiontodensityandcolorvalues.Thisapproachusesadensesetofimagestotrainthenetwork,whichlearnstopredictthecoloranddensityofpointsin3Dspace,allowingforhigh-qualityviewsynthesisfromnovelviewpoints.Researchhasdemonstratedthatasmallmulti-layerperceptron(MLP)withpositionally-encodedinputcoordinatescanaccuratelyrepresentatargetscene[23].Throughstandardvolumerenderingprocedures,rayscanbesampled,evaluated,andconvertedtoimagepixels,withthemodeloptimizingthemeansquarederrorbetweentheoutputtedRGBvaluesandthetrainingimages.Theradiance?eldcanberenderedasimages,depthmaps,orconvertedtoamesh
CHAPTER1.INTRODUCTION5
fordownstreamapplications.NeRFshavedemonstratedimpressiveresultsincapturing?nedetailsandcomplexlightingefects,buttheyassumeastationaryandunchangingtargetsceneacrossalltrainingimages,relyonaccuratecameraposeestimatesfromstructure-from-motionalgorithmslikeCOLMAP[20],andareslowandcomputationallyexpensivetotrain,takinghoursforasinglescene[14].
Signi?cantoptimizationshaveimprovedthee?ciencyofNeRF-basedmethods.Forin-stance,techniqueshavedramaticallyincreasedtrainingspeed[24],andsomeapproaches,suchasPlenoxels,enablefastertrainingwithoutneuralnetworks[19].PixelNeRFandsimi-larworkssuggestthattrainingwithafewinputimagesmightbefeasible[28,25].However,thesefew-imageinputmethodsgenerallyinferthemissingviewsinthescene.Oursystemcapturesalargerareaofthesceneandencodesitintoasingleimage,ensuringthetrainingimagesmoreaccuratelyrepresentthesceneandallowingforreal-timedatacapture.
SeveralextensionsandimprovementstoNeRFhavebeenproposedtoaddressitslimi-tations.D-NeRFadaptsNeRFfordynamicscenesbyincorporatingtemporalinformation,allowingforthesynthesisofscenesthatchangeovertime[18].MonoNeRFattemptstogeneralizeNeRFtomonocularvideos,enablingviewsynthesiswithoutprecisecameraposes[4].However,thesemethodsstillfacechallengesintermsoftrainingtimeandcomputationalresources.
AnalternativeapproachtoviewsynthesisisGaussianSplatting,whichleveragesthein-herentsparsityin3Dscenesbyrepresentingscenesusing3DGaussianfunctions-”Gaussians”-optimizedforposition,orientation,size,andcolor[7].Thismethodcanrenderhigh-qualityimagesinrealtimewhilepreservingimagereconstructionquality,makingitastate-of-the-arttechniquefornovelviewsynthesis.
WeadaptGaussianSplattingtohandlemultiplexedimagescapturedbyourlight?eldcamera.Becauseourimageshaveahigherspace-bandwidthproductthantraditionalmonoc-ularviews,weareabletocreateahigher-?delityreconstructionthanexistingmethods.Theoverarchinggoalistoachieveawider?eldofviewwithourcamerausingintentionallymul-tiplexeddata,enablinge?cientandaccuratereconstructionofphotorealisticvolumesfromasinglecapturewithoutneedingtopredictorgeneraladditionalviewsinthetrainingdata.
CompressedSensing
Compressedsensingisanimagingtechniquethatenablessignalstobeacquiredwithfewermeasurementsbyexploitingtheunderlyingstructureofthesignalforhigh-qualityrecon-struction[3].Typically,capturingasignalrequiresmeasurementsattwicethemaximumspatialfrequencyofthesignal—aspertheShannon-Nyquistsamplingtheorem—toensureallinformationiscaptured.However,signalsareoftencompressible,andthesumofmorein-formationcanbecapturedwithasinglesensorpixelbyspreadingoutthesparseinformationcontainedinthesignalthroughmultiplexing,efectivelyresultinginmoreusefulinforma-tion.Oneofthekeybene?tsofcompressedsensingisitsabilitytosigni?cantlyreduceacquisitiontimeanddatastoragerequirements,whichisparticularlyusefulforhigh-speedorhigh-resolution3Dimagingapplications.
CHAPTER1.INTRODUCTION6
Compressedsensingisparticularlyefectivewhensignalsexhibitsparsityinsomedomain.Thisishighlyrelevanttocomputationalimagingapplications,manyofwhichaimtorecon-structahigh-dimensionalscenefromalimitednumberofmeasurements.Thecompressedsensingparadigmrepresentsapowerfultoolinimagingsystemdesign,wherethesensinghardwareisviewedasanencoderratherthanadirectsignalapproximator.Thisconcepthasalreadymadeasigni?cantimpactin?eldssuchasMRIandcomputedtomography,acceleratingscanspeedsbyreducingthenumberofsamplesrequired[11].Incompressedsensing,thesensingprocessinvolvescapturingmultiplexedmeasurements,whicharelinearcombinationsofthesignal’scomponents.Thesemeasurementsarethenprocessedusingal-gorithmsthatexploitthesparsityofthesignaltoreconstructtheoriginalhigh-dimensionaldata.Thisapproachcontrastswithtraditionalmethodsthatdirectlysampleeachcomponentofthesignalindividually.Byencodingmultipledimensionsoftheopticalimage,compressedsensingenablestherecoveryofdetailedsceneinformationfromfewermeasurements.Inthecontextofopticaldesign,thisraisesthequestionofhowtodesignopticsthatencodeadditionaldimensionsofopticalimagessuchthatsparserecoverycansuccessfullyandaccu-ratelyreconstructtheimage.Speci?cally,inthiswork,weexplorehowopticaldesigncanbeleveragedtoextractlargerspace-bandwidthproductlight?eldsfromasinglemeasurement.
Ourworkemployscompressedsensinginconjunctionwithmultiplexedlight?eldimag-ingtoenhancethecapabilitiesoftraditionalimagingsystems.Byintegratingintentionaloverlappingviewsintotheopticaldesign,wecanencodemoresceneinformationintoeachcapturedimage.Whencomparedtoexistinglight?eldcameras,ourapproachachievesahigherspace-bandwidthproductwiththesamenumberofmeasurements.Whencomparedtoexistingnovelv
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年增城音樂考編試題及答案
- 2025年學(xué)生新消法考試題及答案
- 2025年護(hù)師考試題目及答案中醫(yī)
- 2025年渤海鉆探安全競賽題庫
- 2025年心理咨詢師之心理咨詢師基礎(chǔ)知識考試題庫(含答案)
- 2024年上海市成人高考專升本《教育理論》真題匯編(含答案)
- 2025年氧化工藝考試題庫及氧化工藝找解析
- 2025年uwc試題及答案
- 2025年寶安編外考試題目及答案
- 2025年秋招:會(huì)計(jì)崗題庫及答案
- 2025年廣州市海珠區(qū)華洲街道招聘雇員(4人)筆試備考試題含答案詳解(綜合題)
- 福建省光伏管理辦法
- 2024年南充職業(yè)技術(shù)學(xué)院招聘真題
- 教學(xué)副校長在教師會(huì)上講話:主備不實(shí)集備失魂-把握“六無六不”讓課堂走實(shí)又走心
- 班組成本管理課件
- 印章管理辦法處罰規(guī)定
- 北京卷2025年高考語文真題
- 2025年小升初文學(xué)常識試題大全附答案
- 車隊(duì)業(yè)務(wù)承包協(xié)議書范本
- 顱內(nèi)占位護(hù)理課件
- 航運(yùn)和港口管理引入DeepSeek大模型應(yīng)用設(shè)計(jì)方案
評論
0/150
提交評論