重難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期中測(cè)試卷帶答案詳解(模擬題)_第1頁(yè)
重難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期中測(cè)試卷帶答案詳解(模擬題)_第2頁(yè)
重難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期中測(cè)試卷帶答案詳解(模擬題)_第3頁(yè)
重難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期中測(cè)試卷帶答案詳解(模擬題)_第4頁(yè)
重難點(diǎn)解析京改版數(shù)學(xué)9年級(jí)上冊(cè)期中測(cè)試卷帶答案詳解(模擬題)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

京改版數(shù)學(xué)9年級(jí)上冊(cè)期中測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖,點(diǎn)A(2,t)在第一象限,OA與x軸所夾銳角為,tan=2,則t的值為(

)A.4 B.3 C.2 D.12、拋物線的對(duì)稱軸為直線.若關(guān)于的一元二次方程(為實(shí)數(shù))在的范圍內(nèi)有實(shí)數(shù)根,則的取值范圍是()A. B. C. D.3、三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小完全相同.當(dāng)水面剛好淹沒(méi)小孔時(shí),大孔水面寬度為10米,孔頂離水面1.5米;當(dāng)水位下降,大孔水面寬度為14米時(shí),單個(gè)小孔的水面寬度為4米,若大孔水面寬度為20米,則單個(gè)小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米4、如圖,三角形ABC是等邊三角形,點(diǎn)D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長(zhǎng)等于()A.1 B. C. D.25、如圖,菱形ABCD中,∠BAD=60°,AC、BD交于點(diǎn)O,E為CD延長(zhǎng)線上的一點(diǎn),且CD=DE,連接BE分別交AC,AD于點(diǎn)F、G,連結(jié)OG、AE.則下列結(jié)論:①OG=AB;

②四邊形ABDE是菱形;③;其中正確的是(

)A.①② B.①③ C.②③ D.①②③6、如圖,一塊矩形木板ABCD斜靠在墻邊,(,點(diǎn)A、B、C、D、O在同一平面內(nèi)),已知,,.則點(diǎn)A到OC的距離等于(

)A. B.C. D.二、多選題(7小題,每小題2分,共計(jì)14分)1、下列函數(shù)中,當(dāng)0≤x≤2時(shí),y隨x的增大而減小的是()A.y=﹣x+1 B.y=x2﹣4x+5 C.y=x2 D.y=2、如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論正確的是(

)A.b>0 B.a(chǎn)﹣b+c<0 C.陰影部分的面積為4 D.若c=﹣1,則b2=4a3、如果一種變換是將拋物線向右平移2個(gè)單位或向上平移1個(gè)單位,我們把這種變換稱為拋物線的簡(jiǎn)單變換.已知拋物線經(jīng)過(guò)兩次簡(jiǎn)單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+174、如圖,在△ABC中,點(diǎn)D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(

)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA5、二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論中正確的有()A.a(chǎn)bc>0 B.3a+c<0 C.a(chǎn)+b≥am2+bm D.a(chǎn)﹣b+c>0 E.若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=26、如圖,拋物線過(guò)點(diǎn),對(duì)稱軸是直線.下列結(jié)論正確的是(

)A.B.C.若關(guān)于x的方程有實(shí)數(shù)根,則D.若和是拋物線上的兩點(diǎn),則當(dāng)時(shí),7、如圖,在邊長(zhǎng)為4的正方形ABCD中,E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)G,連接AG交BE于點(diǎn)H,連接DH,下列結(jié)論中正確的是(

A.△ABG∽△FDG B.HD平分∠EHG C.AG⊥BED.S△HDG:S△HBG=tan∠DAG E.線段DH的最小值是2﹣2第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D在拋物線上,且CD∥AB.AD與y軸相交于點(diǎn)E,過(guò)點(diǎn)E的直線PQ平行于x軸,與拋物線相交于P,Q兩點(diǎn),則線段PQ的長(zhǎng)為_(kāi)____.2、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,則GD=_______cm.3、拋物線的開(kāi)口方向向______.4、已知點(diǎn)A(3,a)、B(-1,b)在函數(shù)的圖像上,那么a___b(填“>”或“=”或“<”)5、《九章算術(shù)》中記載了一種測(cè)量井深的方法.如圖所示,在井口B處立一根垂直于井口的木桿,從木桿的頂端D觀察水岸C,視線與井口的直徑交于點(diǎn)E,如果測(cè)得米,米,米,那么井深為_(kāi)_____米.6、已知函數(shù)y=(2﹣k)x2+kx+1是二次函數(shù),則k滿足__.7、如果拋物線y=(m﹣1)x2有最低點(diǎn),那么m的取值范圍為_(kāi)____.四、解答題(6小題,每小題10分,共計(jì)60分)1、某校九年級(jí)數(shù)學(xué)興趣小組的活動(dòng)課題是“測(cè)量物體高度”.小組成員小明與小紅分別采用不同的方案測(cè)量同一個(gè)底面為圓形的古塔高度,以下是他們研究報(bào)告的部分記錄內(nèi)容:課題:測(cè)量古塔的高度小明的研究報(bào)告小紅的研究報(bào)告圖示測(cè)量方案與測(cè)量數(shù)據(jù)用距離地面高度為1.6m的測(cè)角器測(cè)出古塔頂端的仰角為35°,再用皮尺測(cè)得測(cè)角器所在位置與古塔底部邊緣的最短距離為30m.在點(diǎn)A用距離地面高度為1.6m的測(cè)角器測(cè)出古塔頂端的仰角為17°,然后沿AD方向走58.8m到達(dá)點(diǎn)B,測(cè)出古塔頂端的仰角為45°.參考數(shù)據(jù)sin35°≈0.57,cos35°≈0.82,tan35°≈0.70sin17°≈0.29,cos17°≈0.96,tan17°≈0.30,計(jì)算古塔高度(結(jié)果精確到0.1m)30×tan35°+1.6≈22.6(m)(1)寫(xiě)出小紅研究報(bào)告中“計(jì)算古塔高度”的解答過(guò)程;(2)數(shù)學(xué)老師說(shuō)小紅的結(jié)果比較準(zhǔn)確,而小明的結(jié)果與古塔的實(shí)際高度偏差較大.請(qǐng)你針對(duì)小明的測(cè)量方案分析測(cè)量發(fā)生偏差的原因.2、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點(diǎn)A,過(guò)A點(diǎn)作x軸的垂線,垂足為B,當(dāng)△OAB的面積為4時(shí),求m的值.3、如圖,在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),連接DE,交AC于點(diǎn)F.(1)如圖①,當(dāng)時(shí),求的值;(2)如圖②,當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),過(guò)點(diǎn)F作FG⊥BC于點(diǎn)G,求證:CG=BG.

4、如圖所示,拋物線的對(duì)稱軸為直線,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn).(1)求拋物線的解析式;(2)連結(jié),在第一象限內(nèi)的拋物線上,是否存在一點(diǎn),使的面積最大?最大面積是多少?5、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),與反比例函數(shù)y=(x>0)交于點(diǎn)C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點(diǎn)C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點(diǎn),若CD=CE,求點(diǎn)D坐標(biāo).6、如圖,二次函數(shù)的圖象交軸于、兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.求二次函數(shù)的解析式和直線的解析式;點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時(shí),求線段長(zhǎng)度的最大值;在拋物線上是否存在異于、的點(diǎn),使中邊上的高為?若存在求出點(diǎn)的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.-參考答案-一、單選題1、A【解析】【分析】根據(jù)點(diǎn)A的坐標(biāo),利用銳角三角函數(shù)定義求出t的值即可.【詳解】如圖,過(guò)點(diǎn)A作AB⊥x軸與點(diǎn)B,∵點(diǎn)A在第一象限,坐標(biāo)為(2,t),∴,在RT△AOB中,tan,則t=4,故選A.【考點(diǎn)】本題考查了三角函數(shù)的定義,熟練掌握定義即可求解.2、A【解析】【分析】根據(jù)給出的對(duì)稱軸求出函數(shù)解析式為,將一元二次方程的實(shí)數(shù)根可以看做與函數(shù)的有交點(diǎn),再由的范圍確定的取值范圍即可求解;【詳解】∵的對(duì)稱軸為直線,∴,∴,∴一元二次方程的實(shí)數(shù)根可以看做與函數(shù)的有交點(diǎn),∵方程在的范圍內(nèi)有實(shí)數(shù)根,當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)在時(shí)有最小值2,∴,故選A.【考點(diǎn)】本題考查二次函數(shù)的圖象及性質(zhì);能夠?qū)⒎匠痰膶?shí)數(shù)根問(wèn)題轉(zhuǎn)化為二次函數(shù)與直線的交點(diǎn)問(wèn)題,借助數(shù)形結(jié)合解題是關(guān)鍵.3、B【解析】【分析】根據(jù)題意,可以畫(huà)出相應(yīng)的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點(diǎn)為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標(biāo)系,由題意可得MN=4,EF=14,BC=10,DO=,設(shè)大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點(diǎn)B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設(shè)點(diǎn)A(b,0),則設(shè)頂點(diǎn)為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點(diǎn)E的橫坐標(biāo)為-7,∴點(diǎn)E坐標(biāo)為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點(diǎn)為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當(dāng)x=-10時(shí),y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個(gè)小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點(diǎn)】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.4、D【解析】【分析】通過(guò)△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點(diǎn)】本題考查了三角形的相似,做題的關(guān)鍵是△ABD∽△DCE.5、D【解析】【分析】證明四邊形ABDE為平行四邊形可得OB=OD,由菱形ABCD可得AG=DG,根據(jù)三角形中位線定理可判斷①;根據(jù)等邊三角形的性質(zhì)和判定可得△ABD為等邊三角形AB=BD,從而可判斷平行四邊形ABDE是菱形,由此判斷②;借助相似三角形的性質(zhì)和判定,三角形中線有關(guān)的面積問(wèn)題可判斷③.【詳解】解:∵四邊形ABCD是菱形,∴AB∥CD,AB=CD=AD,OA=OC,OB=OD,∵CD=DE,∴AB=DE.又∵AB∥DE,∴四邊形ABDE是平行四邊形,∴BG=EG,AB=DE,AG=DG,又∵OD=OB,∴OG是△BDA是中位線,∴OG=AB,故①正確;∵∠BAD=60°,AB=AD,∴△BAD是等邊三角形,∴BD=AB,∴是菱形,故②正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;故③正確;故選:D.【考點(diǎn)】本題考查了菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形中位線定理、相似三角形的判定與性質(zhì)等知識(shí).判斷①的關(guān)鍵是三角形中位線定理的運(yùn)用,②的關(guān)鍵是利用等邊三角形證明BD=AB;③的關(guān)鍵是通過(guò)相似得出面積之間的關(guān)系.6、C【解析】【分析】根據(jù)矩形的性質(zhì)可得BC=AD=b,∠ABC=90°,再根據(jù)三角函數(shù)可得答案.【詳解】過(guò)點(diǎn)A作AE⊥OB于點(diǎn)E,因?yàn)樗倪呅蜛BCD是矩形,且AB=a,AD=b所以BC=AD=b,∠ABC=90°所以∠BAE=∠CBO=x因?yàn)?,所以,所以點(diǎn)A到OC的距離故選C.【考點(diǎn)】本題考查矩形的性質(zhì)和三角函數(shù),解題的關(guān)鍵是熟練掌握矩形的性質(zhì)和三角函數(shù).二、多選題1、AB【解析】【分析】利用一次函數(shù),二次函數(shù),反比例函數(shù)及正比例函數(shù)的性質(zhì)判定即可.【詳解】解:A、y=-x+1,∵k=-1<0,∴當(dāng)0≤x≤2時(shí)y隨x的增大而減小,說(shuō)法正確,B、y=x2-4x+5,∴拋物線開(kāi)口向上,對(duì)稱軸為直線x=2,∴當(dāng)0≤x≤2時(shí)y隨x的增大而減小,說(shuō)法正確,C、y=x2,∴拋物線開(kāi)口向上,對(duì)稱軸為y軸,∴當(dāng)0≤x≤2時(shí)y隨x的增大而增大,說(shuō)法錯(cuò)誤;D、y=,∴雙曲線在一,三象限,在每個(gè)象限y隨x的增大而減小,∴當(dāng)0<x≤2時(shí)y隨x的增大而減小,而x不能為0,故原說(shuō)法錯(cuò)誤,故答案為AB.【考點(diǎn)】本題綜合考查二次函數(shù)、反比例函數(shù)、一次函數(shù)的增減性(單調(diào)性),熟練掌握二次函數(shù)、一次函數(shù)、反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.2、CD【解析】【分析】根據(jù)拋物線的開(kāi)口方向和拋物線的平移判斷即可;【詳解】∵拋物線開(kāi)口向上,∴,又∵對(duì)稱軸,∴,故A不正確;∵時(shí),,∴,故B不正確;∵拋物線向右平移了2個(gè)單位,∴平行四邊形的底時(shí)2,∵函數(shù)y=ax2+bx+c的最小值是,∴平行四邊形的高是2,∴陰影部分的面積是,故C正確;∵,,∴,故D正確;故選CD.【考點(diǎn)】本題主要考查了二次函數(shù)圖象與幾何變換,準(zhǔn)確分析判斷是解題的關(guān)鍵.3、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個(gè)單位得到y(tǒng)=x2,再向上平移1個(gè)單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個(gè)單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個(gè)單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個(gè)單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個(gè)單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個(gè)單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.4、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個(gè)判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項(xiàng)不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點(diǎn)】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.5、BCE【解析】【分析】根據(jù)二次函數(shù)開(kāi)口方向、對(duì)稱軸和函數(shù)圖像與坐標(biāo)軸的知識(shí)點(diǎn)逐一判斷即可;【詳解】∵拋物線開(kāi)口向下,∴,∵拋物線的對(duì)稱軸為直線,∴,∵拋物線于x軸的交點(diǎn)在x軸上方,∴,∴,故A錯(cuò)誤;∵拋物線于x軸的一個(gè)交點(diǎn)在與之間,∴當(dāng)時(shí),,即,故D錯(cuò)誤;∴,即,故B正確;∵時(shí),y有最大值,∴,即,故C正確;∵,∴,∴,而,∴,∴,故E正確;故選BCE.【考點(diǎn)】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合一元二次方程根與系數(shù)的關(guān)系判定是解題的關(guān)鍵.6、D【解析】【詳解】解:A.∵拋物線開(kāi)口向下,∴a<0,∵對(duì)稱軸在y軸左側(cè),∴a、b同號(hào),∴b<0,∵拋物線與y軸交點(diǎn)在正半軸上,∴c>0,∴abc>0,故此選項(xiàng)不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過(guò)點(diǎn),對(duì)稱軸是直線,∴拋物線與x軸另一交點(diǎn)為(2,0),∴當(dāng)x=2時(shí),y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項(xiàng)不符合題意;C.∵-=-1,∴b=2a,∵當(dāng)x=2時(shí),y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關(guān)于x的方程有實(shí)數(shù)根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項(xiàng)不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(diǎn)(x1,y1)到對(duì)稱軸的距離大于點(diǎn)(x2,y2)到對(duì)稱軸的距離,∴y1<y2,故此選項(xiàng)符合題意;故選:D.【考點(diǎn)】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.7、ACDE【解析】【分析】首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),相似三角形的判定與性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,‘∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠ABE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故選項(xiàng)C正確;同法可證:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故選項(xiàng)A正確;∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故選項(xiàng)D正確;取AB的中點(diǎn)O,連接OD、OH,∵正方形的邊長(zhǎng)為4,∴AO=OH=×4=2,由勾股定理得,OD==2,∵DH≥OD-OH,∴O、D、H三點(diǎn)共線時(shí),DH最小,∴DH最小=2-2.故選項(xiàng)E正確,無(wú)法證明DH平分∠EHG,故選項(xiàng)B錯(cuò)誤,故選項(xiàng)ACDE正確,故選:ACDE.【考點(diǎn)】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,三角函數(shù),勾股定理、等高模型等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,難點(diǎn)在于選項(xiàng)E作輔助線并確定出DH最小時(shí)的情況.三、填空題1、2【解析】【分析】利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A,B,C,D的坐標(biāo),由點(diǎn)A,D的坐標(biāo),利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)E的坐標(biāo),再利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)P,Q的坐標(biāo),進(jìn)而可求出線段PQ的長(zhǎng).【詳解】解:當(dāng)y=0時(shí),﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點(diǎn)A的坐標(biāo)為(﹣2,0);當(dāng)x=0時(shí),y=﹣x2+x+2=2,∴點(diǎn)C的坐標(biāo)為(0,2);當(dāng)y=2時(shí),﹣x2+x+2=2,解得:x1=0,x2=2,∴點(diǎn)D的坐標(biāo)為(2,2).設(shè)直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當(dāng)x=0時(shí),y=x+1=1,∴點(diǎn)E的坐標(biāo)為(0,1).當(dāng)y=1時(shí),﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點(diǎn)P的坐標(biāo)為(1﹣,1),點(diǎn)Q的坐標(biāo)為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)P,Q的坐標(biāo)是解題的關(guān)鍵.2、4.5【解析】【分析】由三角形的重心的性質(zhì)即可得出答案.【詳解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中線,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案為:4.5.【考點(diǎn)】本題考查了三角形的重心,三角形三條中線的交點(diǎn)叫做三角形的重心,三角形的重心到一個(gè)頂點(diǎn)的距離等于它到對(duì)邊中點(diǎn)距離的兩倍.3、下【解析】【分析】根據(jù)二次函數(shù)二次項(xiàng)系數(shù)的大小判斷即可;【詳解】∵,∴拋物線開(kāi)口向下;故答案是下.【考點(diǎn)】本題主要考查了判斷拋物線的開(kāi)口方向,準(zhǔn)確分析判斷是解題的關(guān)鍵.4、<【解析】【分析】把點(diǎn)A(3,a),B(-1,b)代入函數(shù)上求出a、b的值,再進(jìn)行比較即可.【詳解】把點(diǎn)A(3,a)代入函數(shù)可得,a=-1;把點(diǎn)B(-1,b)代入函數(shù)可得,b=3;∵3>-1,即a<b.故答案為:<.【考點(diǎn)】本題比較簡(jiǎn)單,考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),即反比例函數(shù)圖象上點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式.5、7【解析】【分析】由題意易得,則有,然后問(wèn)題可求解.【詳解】解:∵,∴,∴,∵米,米,米,∴,解得米,故井深A(yù)C為7米.【考點(diǎn)】本題主要考查相似三角形的性質(zhì)與判定,熟練掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.6、k≠2【解析】【分析】利用二次函數(shù)定義可得2﹣k≠0,再解不等式即可.【詳解】解:由題意得:2﹣k≠0,解得:k≠2,故答案為:k≠2.【考點(diǎn)】本題主要考查了二次函數(shù)的定義,準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.7、m>1【解析】【分析】直接利用二次函數(shù)的性質(zhì)得出m-1的取值范圍進(jìn)而得出答案.【詳解】解:∵拋物線y=(m-1)x2有最低點(diǎn),∴m-1>0,解得:m>1.故答案為m>1.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),正確掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.四、解答題1、(1)見(jiàn)解析,古塔的高度為26.8m;(2)小明測(cè)量的只是測(cè)角器所在位置與古塔底部邊緣的最短距離,應(yīng)該測(cè)量測(cè)角器所在位置與底面圓心的最短距離【解析】【分析】(1)設(shè),根據(jù)等腰直角三角形的性質(zhì)可得,然后利用正切函數(shù)得出,求解,結(jié)合圖形求解即可得出;(2)對(duì)比小紅的測(cè)量方法,結(jié)合題意:用皮尺測(cè)得測(cè)角器所在位置與古塔底部邊緣的最短距離即可得出誤差較大的原因.【詳解】解:(1)設(shè),在中,∵,∴,在中,∴,∴,∴,即m,∴m,答:古塔的高度為26.8m.(2)原因:小明測(cè)量的只是測(cè)角器所在位置與古塔底部邊緣的最短距離,應(yīng)該測(cè)量測(cè)角器所在位置與底面圓心的最短距離.【考點(diǎn)】題目主要考查利用正切函數(shù)解三角形的應(yīng)用,理解題意,依據(jù)正切函數(shù)列出方程是解題關(guān)鍵.2、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個(gè)反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點(diǎn)】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關(guān)鍵.3、(1)=;(2)證明見(jiàn)解析.【解析】【分析】(1)根據(jù)正方形的性質(zhì)和相似三角形的判定定理,得△CEF∽△ADF,可得=,進(jìn)而即可得到結(jié)論;(2)由AD∥CB,點(diǎn)E是BC的中點(diǎn),得△EFC∽△DFA.CF:AF=EC:AD,由FG//AB,得CG:BG=CF:AF,進(jìn)而即可得到結(jié)論.【詳解】(1)∵,∴=.∵四邊形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)∵AD∥CB,點(diǎn)E是BC的中點(diǎn),∴△EFC∽△DFA.∴CF:AF=EC:AD=1:2,∵FG⊥BC,∴FG//AB,∴CG:BG=CF:AF=1:2,∴CG=BG.【考點(diǎn)】本題主要考查正方形的性質(zhì),相似三角形的判定和性質(zhì)定理以及平行線分線段成比例定理,掌握相似三角形的對(duì)應(yīng)邊成比例,是解題的關(guān)鍵.4、(1);(2)存在,當(dāng)時(shí),面積最大為16,此時(shí)點(diǎn)點(diǎn)坐標(biāo)為.【解析】【分析】(1)用待定系數(shù)法解答便可;(2)設(shè)點(diǎn)的坐標(biāo)為,連結(jié)、、.根據(jù)對(duì)稱性求出點(diǎn)B的坐標(biāo),根據(jù)得到二次函數(shù)關(guān)系式,最后配方求解即可.【詳解】解:(1)∵拋物線過(guò)點(diǎn),∴.∵拋物線的對(duì)稱軸為直線,∴可設(shè)拋物線為.∵拋物線過(guò)點(diǎn),∴,解得.∴拋物線的解析式為,即.(2)存在,設(shè)點(diǎn)的坐標(biāo)為,連結(jié)、、.∵點(diǎn)A、關(guān)于直線對(duì)稱,且∴.∴.∵∴當(dāng)時(shí),面積最大為16,此時(shí)點(diǎn)點(diǎn)坐標(biāo)為.【考點(diǎn)】本題主要考查了二次函數(shù)的圖象與性質(zhì),待定系數(shù)法,三角形面積公式以及二次函數(shù)的最值求法,根據(jù)圖形得出由此得出二次函數(shù)關(guān)系式是解答此題的關(guān)鍵.5、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論