廣東省梅州市名校2026屆中考數學考試模擬沖刺卷含解析_第1頁
廣東省梅州市名校2026屆中考數學考試模擬沖刺卷含解析_第2頁
廣東省梅州市名校2026屆中考數學考試模擬沖刺卷含解析_第3頁
廣東省梅州市名校2026屆中考數學考試模擬沖刺卷含解析_第4頁
廣東省梅州市名校2026屆中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省梅州市名校2026屆中考數學考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.菱形ABCD中,對角線AC、BD相交于點O,H為AD邊中點,菱形ABCD的周長為28,則OH的長等于()A.3.5 B.4 C.7 D.142.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.433.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數為()A.34° B.56° C.66° D.54°4.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長度為()A.12cm B.12cm C.24cm D.24cm5.關于二次函數,下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側C.當時,的值隨值的增大而減小 D.的最小值為-36.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.127.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里8.如果關于的不等式組的整數解僅有、,那么適合這個不等式組的整數、組成的有序數對共有()A.個 B.個 C.個 D.個9.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.510.下列四個實數中是無理數的是()A.2.5B.103二、填空題(共7小題,每小題3分,滿分21分)11.已知二次函數中,函數y與x的部分對應值如下:...-10123......105212...則當時,x的取值范圍是_________.12.如圖,在平面直角坐標系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數y=的圖象上,則菱形的面積為_____.13.一個不透明的袋中裝有除顏色外均相同的8個黑球、4個白球和若干個紅球.每次搖勻后隨機摸出一個球,記下顏色后再放回袋中,通過大量重復摸球試驗后,發(fā)現摸到紅球的頻率穩(wěn)定于0.4,由此可估計袋中約有紅球_____個.14.分解因式______.15.已知一個正六邊形的邊心距為,則它的半徑為______.16.直角三角形的兩條直角邊長為6,8,那么斜邊上的中線長是____.17.計算:________.三、解答題(共7小題,滿分69分)18.(10分)如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα=角α的鄰邊角(1)如圖1,若BC=3,AB=5,則ctanB=_____;(2)ctan60°=_____;(3)如圖2,已知:△ABC中,∠B是銳角,ctanC=2,AB=10,BC=20,試求∠B的余弦cosB的值.19.(5分)已知一個口袋中裝有7個只有顏色不同的球,其中3個白球,4個黑球.(1)求從中隨機抽取出一個黑球的概率是多少?(2)若往口袋中再放入x個白球和y個黑球,從口袋中隨機取出一個白球的概率是14,求y與x20.(8分)(1)計算:(2)化簡:21.(10分)計算:﹣﹣|4sin30°﹣|+(﹣)﹣122.(10分)P是⊙O內一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關于⊙O的“冪值”為_____;②判斷當弦AB的位置改變時,點P關于⊙O的“冪值”是否為定值,若是定值,證明你的結論;若不是定值,求點P關于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.23.(12分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(點A在點B的左側),直線l與拋物線交于A,C兩點,其中點C的橫坐標為1.(1)求A,B兩點的坐標及直線AC的函數表達式;(1)P是線段AC上的一個動點(P與A,C不重合),過P點作y軸的平行線交拋物線于點E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線AC與y軸交于點Q,點M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長最?。咳舸嬖?,求出這個最小值及點M,N的坐標;若不存在,請說明理由.(4)點H是拋物線上的動點,在x軸上是否存在點F,使A、C、F、H四個點為頂點的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標;如果不存在,請說明理由.24.(14分)在平面直角坐標系xOy中有不重合的兩個點與.若Q、P為某個直角三角形的兩個銳角頂點,當該直角三角形的兩條直角邊分別與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點Q與點P之間的“直距”記做,特別地,當PQ與某條坐標軸平行(或重合)時,線段PQ的長即為點Q與點P之間的“直距”.例如下圖中,點,點,此時點Q與點P之間的“直距”.(1)①已知O為坐標原點,點,,則_________,_________;②點C在直線上,求出的最小值;(2)點E是以原點O為圓心,1為半徑的圓上的一個動點,點F是直線上一動點.直接寫出點E與點F之間“直距”的最小值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據菱形的四條邊都相等求出AB,菱形的對角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【詳解】∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點,∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.【點睛】本題考查了菱形的對角線互相平分的性質,三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質與定理是解題的關鍵.2、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質,勾股定理,正確的作出輔助線是解題的關鍵.3、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質.4、D【解析】

過A作AD⊥BF于D,根據45°角的三角函數值可求出AB的長度,根據含30°角的直角三角形的性質求出斜邊AC的長即可.【詳解】如圖,過A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【點睛】本題考查解直角三角形,在直角三角形中,30°角所對的直角邊等于斜邊的一半,熟記特殊角三角函數值是解題關鍵.5、D【解析】分析:根據題目中的函數解析式可以判斷各個選項中的結論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數的性質、二次函數的最值,解答本題的關鍵是明確題意,利用二次函數的性質解答.6、B【解析】

設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數的性質得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據等腰直角三角形的性質得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質和等腰直角三角形的性質.7、D【解析】

根據題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應用以及方向角,正確應用勾股定理是解題關鍵.8、D【解析】

求出不等式組的解集,根據已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【詳解】解不等式2x?a≥0,得:x≥,解不等式3x?b≤0,得:x≤,∵不等式組的整數解僅有x=2、x=3,則1<≤2、3≤<4,解得:2<a≤4、9≤b<12,則a=3時,b=9、10、11;當a=4時,b=9、10、11;所以適合這個不等式組的整數a、b組成的有序數對(a,b)共有6個,故選:D.【點睛】本題考查了解一元一次不等式組,不等式組的整數解,有序實數對的應用,解此題的根據是求出a、b的值.9、A【解析】

根據直線外一點和直線上點的連線中,垂線段最短的性質,可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質,解題關鍵是利用垂線段的性質.10、C【解析】本題主要考查了無理數的定義.根據無理數的定義:無限不循環(huán)小數是無理數即可求解.解:A、2.5是有理數,故選項錯誤;B、103C、π是無理數,故選項正確;D、1.414是有理數,故選項錯誤.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、0<x<4【解析】

根據二次函數的對稱性及已知數據可知該二次函數的對稱軸為x=2,結合表格中所給數據可得出答案.【詳解】由表可知,二次函數的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數的性質,利用圖表得出二次函數的圖象即可得出函數值得取值范圍,同學們應熟練掌握.12、1【解析】

連接AC交OB于D,由菱形的性質可知.根據反比例函數中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【詳解】連接AC交OB于D.

四邊形OABC是菱形,

點A在反比例函數的圖象上,

的面積,

菱形OABC的面積=的面積=1.【點睛】本題考查的知識點是菱形的性質及反比例函數的比例系數k的幾何意義.解題關鍵是反比例函數圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即.13、8【解析】試題分析:設紅球有x個,根據概率公式可得,解得:x=8.考點:概率.14、(x+y+z)(x﹣y﹣z).【解析】

當被分解的式子是四項時,應考慮運用分組分解法進行分解.本題后三項可以為一組組成完全平方式,再用平方差公式即可.【詳解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z).故答案為(x+y+z)(x-y-z).【點睛】本題考查了用分組分解法進行因式分解.難點是采用兩兩分組還是三一分組.本題后三項可組成完全平方公式,可把后三項分為一組.15、2【解析】試題分析:設正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據三角函數即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關系.解題的關鍵在于利用正多邊形的半徑、邊心距構造直角三角形并利用解直角三角形的知識求解.16、1.【解析】

試題分析:∵直角三角形的兩條直角邊長為6,8,∴由勾股定理得,斜邊=10.∴斜邊上的中線長=×10=1.考點:1.勾股定理;2.直角三角形斜邊上的中線性質.17、【解析】

根據二次根式的運算法則先算乘法,再將分母有理化,然后相加即可.【詳解】解:原式==【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.三、解答題(共7小題,滿分69分)18、(1);(2);(3).【解析】試題分析:(1)先利用勾股定理計算出AC=4,然后根據余切的定義求解;(2)根據余切的定義得到ctan60°=,然后把tan60°=代入計算即可;(3)作AH⊥BC于H,如圖2,先在Rt△ACH中利用余切的定義得到ctanC==2,則可設AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接著再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根據余弦的定義求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如圖2,在Rt△ACH中,ctanC==2,設AH=x,則CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考點:解直角三角形.19、(1)47.(2)y=3x+5【解析】試題分析:(1)根據取出黑球的概率=黑球的數量÷球的總數量得出答案;(2)根據概率的計算方法得出方程,從求出函數關系式.試題解析:(1)取出一個黑球的概率P=(2)∵取出一個白球的概率P=∴∴12+4x=7+x+y∴y與x的函數關系式為:y=3x+5.考點:概率20、(1);(2)-1;【解析】

(1)根據負整數指數冪、特殊角的三角函數、零指數冪可以解答本題;(2)根據分式的除法和減法可以解答本題.【詳解】(1)==2-.(2)=====-1【點睛】本題考查分式的混合運算、負整數指數冪、特殊角的三角函數、零指數冪,解答本題的關鍵是明確它們各自的計算方法.21、﹣4﹣1.【解析】

先逐項化簡,再合并同類項或同類二次根式即可.【詳解】解:原式=﹣3﹣(﹣2)﹣12=﹣3﹣+2﹣12=﹣4﹣1.【點睛】本題考查了實數的混合運算,熟練掌握特殊角的三角函數值,二次根式的性質以及負整數指數冪的意義是解答本題的關鍵.22、(1)①20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明見解析;(2)點P關于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解析】【詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質得到△PBO為直角三角形,然后依據勾股定理可求得PB的長,然后依據冪值的定義求解即可;②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據相似三角形的性質得到PA?PB=PA′?PB′從而得出結論;(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質可知AP=PB,然后在Rt△APO中,依據勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P的坐標,然后由題意圓的冪值為6,半徑為1可求得d的值,再結合兩點間的距離公式可得到關于b的方程,從而可求得b的極值,據此即可確定出b的取值范圍.【詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點P的任意一條弦,且不與OP垂直,過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA?PB=PA′?PB′=20,∴當弦AB的位置改變時,點P關于⊙O的“冪值”為定值;(2)如圖3所示;連接OP、過點P作AB⊥OP,交圓O與A、B兩點,∵AO=OB,PO⊥AB,∴AP=PB,∴點P關于⊙O的“冪值”=AP?PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴關于⊙O的“冪值”=r2﹣d2,故答案為:點P關于⊙O的“冪值”為r2﹣d2;(3)如圖1所示:過點C作CP⊥AB,,∵CP⊥AB,AB的解析式為y=x+b,∴直線CP的解析式為y=﹣x+.聯立AB與CP,得,∴點P的坐標為(﹣﹣b,+b),∵點P關于⊙C的“冪值”為6,∴r2﹣d2=6,∴d2=3,即(﹣﹣b)2+(+b)2=3,整理得:b2+2b﹣9=0,解得b=﹣3或b=,∴b的取值范圍是﹣3≤b≤,故答案為:﹣3≤b≤.【點睛】本題綜合性質較強,考查了新定義題,解答過程中涉及到了冪值的定義、勾股定理、等腰三角形的性質、相似三角形的性質和判定、一次函數的交點問題、兩點間的距離公式等,依據兩點間的距離公式列出關于b的方程,從而求得b的極值是解題的關鍵.23、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點坐標為F1(1,0),F1(﹣3,0),F3(4+,0),F4(4﹣,0).【解析】

(1)令拋物線y=x1-1x-3=0,求出x的值,即可求A,B兩點的坐標,根據兩點式求出直線AC的函數表達式;

(1)設P點的橫坐標為x(-1≤x≤1),求出P、E的坐標,用x表示出線段PE的長,求出PE的最大值,進而求出△ACE的面積最大值;

(3)根據D點關于PE的對稱點為點C(1,-3),點Q(0,-1)點關于x軸的對稱點為M(0,1),則四邊形DMNQ的周長最小,求出直線CM的解析式為y=-1x+1,進而求出最小值和點M,N的坐標;

(4)結合圖形,分兩類進行討論,①CF平行x軸,如圖1,此時可以求出F點兩個坐標;②CF不平行x軸,如題中的圖1,此時可以求出F點的兩個坐標.【詳解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);將C點的橫坐標x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直線AC的函數解析式是(1)設P點的橫坐標為x(﹣1≤x≤1),則P、E的坐標分別為:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P點在E點的上方,∴當時,PE的最大值△ACE的面積最大值(3)D點關于PE的對稱點為點C(1,﹣3),點Q(0,﹣1)點關于x軸的對稱點為K(0,1),連接CK交直線PE于M點,交x軸于N點,可求直線CK的解析式為,此時四邊形DMNQ的周長最小,最小值求得M(1,﹣1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論