




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,已知AB是?O的直徑,點P在B的延長線上,PD與⊙O相切于點D,過點B作PD的垂線交PD的延長線于點C.若⊙O的半徑為1.BC=9,則PA的長為()A.8 B.4 C.1 D.52.已知一個菱形的周長是,兩條對角線長的比是,則這個菱形的面積是()A. B. C. D.3.如圖,線段AB兩個端點坐標分別為A(4,6),B(6,2),以原點O為位似中心,在第三象限內(nèi)將線段AB縮小為原來的后,得到線段CD,則點C的坐標為()A.(﹣2,﹣3) B.(﹣3,﹣2) C.(﹣3,﹣1) D.(﹣2,﹣1)4.已知點為反比例函數(shù)圖象上的兩點,當時,下列結論正確的是()A. B.C. D.5.下列事件中,是必然事件的是()A.某射擊運動員射擊一次,命中靶心B.拋一枚硬幣,一定正面朝上C.打開電視機,它正在播放新聞聯(lián)播D.三角形的內(nèi)角和等于180°6.如圖,點A,B,C,D四個點均在⊙O上,∠A=70°,則∠C為()A.35° B.70° C.110° D.120°7.拋物線y=(x﹣2)2﹣3的頂點坐標是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)8.如圖,為的切線,切點為,連接,與交于點,延長與交于點,連接,若,則的度數(shù)為()A. B. C. D.9.一個盒子裝有紅、黃、白球分別為2、3、5個,這些球除顏色外都相同,從袋中任抽一個球,則抽到黃球的概率是()A. B. C. D.10.如圖,⊙O是△ABC的外接圓,已知AD平分∠BAC交⊙O于點D,AD=5,BD=2,則DE的長為()A. B. C. D.11.為考察兩名實習工人的工作情況,質(zhì)檢部將他們工作第一周每天生產(chǎn)合格產(chǎn)品的個數(shù)整理成甲,乙兩組數(shù)據(jù),如下表:甲26778乙23488關于以上數(shù)據(jù),說法正確的是()A.甲、乙的眾數(shù)相同 B.甲、乙的中位數(shù)相同C.甲的平均數(shù)小于乙的平均數(shù) D.甲的方差小于乙的方差12.如圖,在一幅長80cm,寬50cm的矩形樹葉畫四周鑲一條金色的紙邊,制成一幅矩形掛圖,若要使整個掛圖的面積是5400cm2,設金色紙邊的寬為xcm,則滿足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=5400二、填空題(每題4分,共24分)13.若<2,化簡_____________14.如圖,在中,,,,點是上的任意一點,作于點,于點,連結,則的最小值為________.15.如圖,⊙O的半徑為4,點B是圓上一動點,點A為⊙O內(nèi)一定點,OA=4,將AB繞A點順時針方向旋轉(zhuǎn)120°到AC,以AB、BC為鄰邊作?ABCD,對角線AC、BD交于E,則OE的最大值為_____.16.如圖,在△ABC中,點DE分別在ABAC邊上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6.則線段CD的長為______17.若關于的一元二次方程的一個根是,則的值是_________.18.二次函數(shù)y=﹣x2+bx+c的部分圖象如圖所示,由圖象可知,不等式﹣x2+bx+c<0的解集為______.三、解答題(共78分)19.(8分)為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計如下:使用次數(shù)05101520人數(shù)11431(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是次,眾數(shù)是次.(2)若小明同學把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是.(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)(3)若該小區(qū)有2000名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).20.(8分)已知拋物線與軸交于點.(1)求點的坐標和該拋物線的頂點坐標;(2)若該拋物線與軸交于兩點,求的面積;(3)將該拋物線先向左平移個單位長度,再向上平移個單位長度,求平移后的拋物線的解析式(直接寫出結果即可).21.(8分)一個不透明的口袋中裝有紅、白兩種顏色的小球(除顏色外其余都相同),其中紅球3個,白球1個.(1)求任意摸出一球是白球的概率;(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用畫樹狀圖或列表的方法求兩次摸出都是紅球的概率.22.(10分)如圖,矩形ABCD的四個頂點在正三角形EFG的邊上.已知△EFG的邊長為2,設邊長AB為x,矩形ABCD的面積為S.求:(1)S關于x的函數(shù)表達式和自變量x的取值范圍.(2)S的最大值及此時x的值.23.(10分)如圖,是的直徑,為上一點,于點,交于點,與交于點為延長線上一點,且.(1)求證:是的切線;(2)求證:;(3)若,求的長.24.(10分)如圖,△ABC中,點E在BC邊上,AE=AB,將線段AC繞A點逆時針旋轉(zhuǎn)到AF的位置,使得∠CAF=∠BAE,連接EF,EF與AC交于點G.求證:EF=BC.25.(12分)已知關于的一元二次方程有兩個不相等的實數(shù)根,.(1)若為正整數(shù),求的值;(2)若,滿足,求的值.26.自貢是“鹽之都,龍之鄉(xiāng),燈之城”,文化底蘊深厚.為弘揚鄉(xiāng)土特色文化,某校就同學們對“自貢歷史文化”的了解程度進行隨機抽樣調(diào)查,將調(diào)查結果繪制成如下兩幅統(tǒng)計圖:⑴本次共調(diào)查名學生,條形統(tǒng)計圖中=;⑵若該校共有學生1200名,則該校約有名學生不了解“自貢歷史文化”;⑶調(diào)查結果中,該校九年級(2)班學生中了解程度為“很了解”的同學進行測試,發(fā)現(xiàn)其中共有四名同學相當優(yōu)秀,它們是三名男生,一名女生,現(xiàn)準備從這四名同學中隨機抽取兩人去市里參加“自貢歷史文化”知識競賽,用樹狀圖或列表法,求恰好抽取一男生一女生的概率.
參考答案一、選擇題(每題4分,共48分)1、C【分析】連接OD,利用切線的性質(zhì)可得∠PDO=90°,再判定△PDO∽△PCB,最后再利用相似三角形的性質(zhì)列方程解答即可.【詳解】解:連接DO∵PD與⊙O相切于點D,∴∠PDO=90°,∵BC⊥PC,∴∠C=90°,∴∠PDO=∠C,∴DO//BC,∴△PDO∽△PCB,∴,設PA=x,則,解得:x=1,∴PA=1.故答案為C.本題考查了圓的切線性質(zhì)以及相似三角形的判定與性質(zhì),證得△PDO∽△PCB是解答本題的關鍵.2、D【分析】首先可求出菱形的邊長,設菱形的兩對角線分別為8x,6x,由勾股定理求出x的值,從而可得兩條對角線的長,根據(jù)菱形的面積等于對角線乘積的一半列式計算即可求解.【詳解】解:∵菱形的邊長是20cm,∴菱形的邊長=20÷4=5cm,∵菱形的兩條對角線長的比是,∴設菱形的兩對角線分別為8x,6x,∵菱形的對角線互相平分,∴對角線的一半分別為4x,3x,由勾股定理得:,解得:x=1,∴菱形的兩對角線分別為8cm,6cm,∴菱形的面積=cm2,故選:D.本題考查了菱形的性質(zhì)、勾股定理,主要理由菱形的對角線互相平分的性質(zhì),以及菱形的面積等于對角線乘積的一半.3、A【詳解】解:∵線段AB的兩個端點坐標分別為A(4,6),B(6,2),以原點O為位似中心,在第三象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點C的橫坐標和縱坐標都變?yōu)锳點的一半,∴端點C的坐標為:(-2,-3).故選A.4、A【分析】根據(jù)反比例函數(shù)在第一象限內(nèi)的增減性即可得出結論.【詳解】∵反比例函數(shù)在時,y隨著x的增大而減小,∴當時,故選:A.本題主要考查反比例函數(shù)的性質(zhì),掌握反比例函數(shù)的性質(zhì)是解題的關鍵.5、D【分析】根據(jù)必然事件、不可能事件、隨機事件的概念解答即可.【詳解】A.某射擊運動員射擊一次,命中靶心,是隨機事件,故此選項錯誤;B.拋一枚硬幣,一定正面朝上,是隨機事件,故此選項錯誤;C.打開電視機,它正在播放新聞聯(lián)播,是隨機事件,故此選項錯誤;D.三角形的內(nèi)角和等于180°,是必然事件.故選:D.本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、C【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)即可求出∠C.【詳解】∵四邊形ABCD是圓內(nèi)接四邊形,∴∠C=180°﹣∠A=110°,故選:C.此題考查的是圓的內(nèi)接四邊形,掌握圓內(nèi)接四邊形的性質(zhì):對角互補,是解決此題的關鍵.7、A【解析】已知拋物線解析式為頂點式,可直接寫出頂點坐標.【詳解】:∵y=(x﹣2)2﹣3為拋物線的頂點式,根據(jù)頂點式的坐標特點可知,
∴拋物線的頂點坐標為(2,-3).
故選A..本題考查了將解析式化為頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h.8、D【分析】由切線性質(zhì)得到,再由等腰三角形性質(zhì)得到,然后用三角形外角性質(zhì)得出【詳解】切線性質(zhì)得到故選D本題主要考查圓的切線性質(zhì)、三角形的外角性質(zhì)等,掌握基礎定義是解題關鍵9、D【分析】用黃球的個數(shù)除以球的總數(shù)即為摸到黃球的概率.【詳解】∵布袋中裝有紅、黃、白球分別為2、3、5個,共10個球,從袋中任意摸出一個球共有10種結果,其中出現(xiàn)黃球的情況有3種可能,∴得到黃球的概率是:.故選:D.本題考查隨機事件概率的求法:如果一個事件有m種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)n種結果,那么事件A的概率P(A)=.10、D【分析】根據(jù)AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所對的圓周角相等,求證△ABD△BED,利用其對應邊成比例可得,然后將已知數(shù)值代入即可求出DE的長.【詳解】解:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所對的圓周角相等),∴∠DBC=∠BAD,∴△ABD△BED,∴,∴DE=故選D.本題考查圓周角定理以及相似三角形的判定與性質(zhì),根據(jù)其定理進行分析.11、D【分析】分別根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的定義進行求解后進行判斷即可得.【詳解】甲:數(shù)據(jù)7出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為7,排序后最中間的數(shù)是7,所以中位數(shù)是7,,=4.4,乙:數(shù)據(jù)8出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為8,排序后最中間的數(shù)是4,所以中位數(shù)是4,,=6.4,所以只有D選項正確,故選D.本題考查了眾數(shù)、中位數(shù)、平均數(shù)、方差,熟練掌握相關定義及求解方法是解題的關鍵.12、B【詳解】根據(jù)題意可得整副畫的長為(80+2x)cm,寬為(50+2x)cm,則根據(jù)長方形的面積公式可得:(80+2x)(50+2x)=1.故應選:B考點:一元二次方程的應用二、填空題(每題4分,共24分)13、2-x.【分析】直接利用二次根式的性質(zhì)化簡求出答案.【詳解】解:∵x<2,∴x-2<0,故答案是:2-x.此題主要考查了二次根式的性質(zhì)與化簡,正確把握二次根式的性質(zhì)是解題關鍵.14、【分析】連接,根據(jù)矩形的性質(zhì)可知:,當最小時,則最小,根據(jù)垂線段最短可知當時,則最小,再根據(jù)三角形的面積為定值即可求出的長.【詳解】中,,,,,連接,于點,于點,四邊形是矩形,,當最小時,則最小,根據(jù)垂線段最短可知當時,則最小,.故答案為:.本題考查了勾股定理的運用、矩形的判定和性質(zhì)以及直角三角形的面積的不同求法,題目難度不大,設計很新穎,解題的關鍵是求的最小值轉(zhuǎn)化為其相等線段的最小值.15、2+2【分析】如圖,構造等腰△OAF,使得AO=AF,∠OAF=120°,連接CF,OB,取AF的中點J,連接EJ.證明EJ是定值,可得點E的運動軌跡是以J為圓心,EJ為半徑的圓,由此即可解決問題.【詳解】如圖,構造等腰△OAF,使得AO=AF,∠OAF=120°,連接CF,OB,取AF的中點J,連接EJ.∵∠BAC=∠OAF=120°,∴∠BAO=∠CAF,∵ABAC,AO=AF,∴△OAB≌△FAC(SAS),∴CF=OB=,∵四邊形BCDA是平行四邊形,∴AE=EC,∵AJ=JF,∴EJ=CF=,∴點E的運動軌跡是以J為圓心,EJ為半徑的圓,易知OJ=當點E在OJ的延長線上時,OE的值最大,最大值為OJ+JE=,故答案為2+2.本題考查的是圓的綜合,難度較大,解題關鍵是找出EJ是最大值.16、【分析】設AD=2x,BD=x,所以AB=3x,易證△ADE∽△ABC,利用相似三角形的性質(zhì)可求出DE的長度,以及,再證明△ADE∽△ACD,利用相似三角形的性質(zhì)即可求出得出,從而可求出CD的長度.【詳解】設AD=2x,BD=x,∴AB=3x,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴DE=4,,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴,設AE=2y,AC=3y,∴,∴AD=y(tǒng),∴,∴CD=2,故填:2.本題考查相似三角形,解題的關鍵是熟練運用相似三角形的性質(zhì)與判定,本題屬于中等題型.17、1【分析】先利用一元二次方程根的定義得到a-b=﹣4,再把2019﹣a+b變形為2019﹣(a-b),然后利用整體代入的方法計算.【詳解】把代入一元二次方程,得:,即:,∴,故答案為:1.本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.18、x<?1或x>5.【分析】先利用拋物線的對稱性得到拋物線與x軸的另一個交點坐標為(-1,0),然后寫出拋物線在x軸下方所對應的自變量的范圍即可.【詳解】拋物線的對稱軸為直線x=2,而拋物線與x軸的一個交點坐標為(5,0),所以拋物線與x軸的另一個交點坐標為(?1,0),所以不等式?x2+bx+c<0的解集為x<?1或x>5.故答案為x<?1或x>5.考點:二次函數(shù)圖象的性質(zhì)三、解答題(共78分)19、(1)10,10;(2)中位數(shù)和眾數(shù);(3)22000【分析】(1)根據(jù)眾數(shù)、中位數(shù)和平均數(shù)的定義分別求解可得;
(2)由中位數(shù)和眾數(shù)不受極端值影響可得答案;
(3)用總人數(shù)乘以樣本中居民的平均使用次數(shù)即可得.【詳解】解:(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是:(次),根據(jù)使用次數(shù)可得:眾數(shù)為10次;(2)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是中位數(shù)和眾數(shù),
故答案為:中位數(shù)和眾數(shù);(3)平均數(shù)為(次),(次)估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù)為22000次.本題考查的是平均數(shù)、眾數(shù)、中位數(shù)的定義及其求法,牢記定義是關鍵.20、(1)(0,5);;(2)15;(3)【分析】(1)令x=0即可得出點C的縱坐標,從而得出點C的坐標;利用配方法將拋物線表達式進行變形即可得出頂點坐標(2)求出A,B兩點的坐標,進而求出A與B的距離,由C點坐標可知OC的長,即可得出答案(3)根據(jù)平移的規(guī)律結合原拋物線表達式即可得出答案.【詳解】解:(Ⅰ)當時,,故點,則拋物線的表達式為:,故頂點坐標為:;(2)令,解得:或,則,則;(3)∵∴平移后的拋物線表達式為:本題考查的知識點是二次函數(shù)圖象與幾何變換以及二次函數(shù)的性質(zhì),此題較為基礎,易于掌握.21、(1);(2)【分析】(1)直接利用概率公式求解;(2)畫樹狀圖展示所有12種等可能的結果數(shù),再找出兩次摸出都是紅球的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)任意摸出一球是白球的概率=;(2)畫樹狀圖為:共有12種等可能的結果數(shù),其中兩次摸出都是紅球的結果數(shù)為6,∴兩次摸出都是紅球的概率==.本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.22、(1);(2)【分析】(1)根據(jù)矩形的性質(zhì)得到,CD=AB,CD∥AB,由平行可以得到△CDE也為正三角形,所以DE=CD=x,DF=2-x.根據(jù)等邊三角形的性質(zhì)得到∠F=60°,得AD=,再根據(jù)矩形的面積公式即可得到結論;
(2)根據(jù)二次函數(shù)的性質(zhì)即可得到結論.【詳解】解:四邊形ABCD為矩形,∴CD=AB,CD∥AB,又△EFG為正三角形,∴△CDE也為正三角形.∴DE=CD=x,∴DF=2-x.又在正三角形EFG中,可得∠F=60°,∴AD==,∴S=AB·AD=x·=(2)由,∴當x=1時,S取得最大值,最大值為本題考查了矩形的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),二次函數(shù)的性質(zhì),正確的理解題意是解題的關鍵.23、(1)證明見解析;(2)證明見解析;(3)【分析】(1)欲證明BD是⊙O的切線,只要證明BD⊥AB;
(2)連接AC,證明△FCM∽△FAC即可解決問題;
(3)連接BF,想辦法求出BF,F(xiàn)M即可解決問題.【詳解】(1)∵,
∴∠AFC=∠ABC,
又∵∠AFC=∠ODB,
∴∠ABC=∠ODB,
∵OE⊥BC,
∴∠BED=90°,
∴∠ODB+∠EBD=90°,
∴∠ABC+∠EBD=90°,
∴OB⊥BD,
∴BD是⊙O的切線;
(2)連接AC,
∵OF⊥BC,
∴,,
∴∠BCF=∠FAC,
又∵∠CFM=∠AFC,
∴△FCM∽△FAC,
∴;
(3)連接BF,
∵AB是⊙O的直徑,且AB=10,
∴∠AFB=90°,∴,
∴,
∴,
∵,
∴,
∵,
∴,
∴,∴.本題屬于圓綜合題,考查了圓周
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能制造產(chǎn)教融合實訓基地項目技術方案
- 芯片封裝材料生產(chǎn)線項目節(jié)能評估報告
- 2025全國中小學“學憲法、講憲法”活動知識競賽題庫和答案
- 2025年青海省公務員錄用考試《行政職業(yè)能力測驗》試題及答案
- 2025年公務員考試公共基礎知識試題庫(附含答案)
- 信號通路干擾效應-洞察與解讀
- 3D模型縫紉技術-洞察與解讀
- 2025年“世界艾滋病日”暨預防艾滋病知識競賽題庫及答案
- 高三試卷:甘肅、青海、寧夏金太陽百校聯(lián)考2025屆高三11月聯(lián)考試題及答案化學答案
- 高三試卷:2025屆江西省贛州市十八縣(市、區(qū))二十四校高三上學期期中考試地理試題
- 成人反流誤吸高危人群全身麻醉管理專家共識(2025版)解讀 3
- 淀粉加工工培訓考核試卷及答案
- 網(wǎng)站推廣代理服務合同5篇
- 2025年燃氣職業(yè)技能鑒定全真模擬模擬題【各地真題】附答案詳解
- 2025-2026學年遼海版(2024)小學美術二年級上冊《巧用材料》教學設計
- 2025中數(shù)聯(lián)物流科技(上海)有限公司招聘考試參考試題及答案解析
- 具身智能+農(nóng)業(yè)種植智能農(nóng)業(yè)機器人應用研究報告
- 量子計算在人工智能領域的發(fā)展趨勢與2025年應用案例分析報告
- 醫(yī)療風險與安全培訓課件
- 2025年未來就業(yè)報告
- 艾梅乙反歧視培訓課件
評論
0/150
提交評論