高數(shù)下考試試題及答案_第1頁(yè)
高數(shù)下考試試題及答案_第2頁(yè)
高數(shù)下考試試題及答案_第3頁(yè)
高數(shù)下考試試題及答案_第4頁(yè)
高數(shù)下考試試題及答案_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高數(shù)下考試試題及答案

一、單項(xiàng)選擇題(每題2分,共10題)1.設(shè)向量\(\vec{a}=(1,2,3)\),\(\vec=(2,-1,1)\),則\(\vec{a}\cdot\vec=(\)\)A.7B.8C.9D.10答案:A2.函數(shù)\(z=\ln(x+y)\)的定義域是(\)A.\(x+y>0\)B.\(x+y\neq0\)C.\(x>0,y>0\)D.\(x\geqslant0,y\geqslant0\)答案:A3.二重積分\(\iint_Ddxdy\)(\(D\)為\(x^{2}+y^{2}\leqslant1\))的值為(\)A.\(\pi\)B.\(2\pi\)C.\(3\pi\)D.\(4\pi\)答案:A4.級(jí)數(shù)\(\sum_{n=1}^{\infty}\frac{1}{n(n+1)}\)的和為(\)A.0B.1C.2D.發(fā)散答案:B5.設(shè)\(y=e^{x}\sinx\),則\(y''=(\)\)A.\(2e^{x}\cosx\)B.\(2e^{x}\sinx\)C.\(-2e^{x}\cosx\)D.\(-2e^{x}\sinx\)答案:A6.曲線\(y=\frac{1}{x}\)在點(diǎn)\((1,1)\)處的切線方程為(\)A.\(y=-x+2\)B.\(y=x\)C.\(y=-x\)D.\(y=x+2\)答案:A7.若\(\intf(x)dx=F(x)+C\),則\(\intf(2x)dx=(\)\)A.\(F(2x)+C\)B.\(\frac{1}{2}F(2x)+C\)C.\(2F(2x)+C\)D.\(\frac{1}{2}F(x)+C\)答案:B8.已知\(z=f(x,y)\),\(\frac{\partialz}{\partialx}=x+y\),\(\frac{\partialz}{\partialy}=x-y\),則\(dz=(\)\)A.\((x+y)dx+(x-y)dy\)B.\((x-y)dx+(x+y)dy\)C.\((x+y)dx-(x-y)dy\)D.\((x-y)dx-(x+y)dy\)答案:A9.冪級(jí)數(shù)\(\sum_{n=0}^{\infty}nx^{n}\)的收斂半徑\(R=(\)\)A.0B.1C.2D.\(\infty\)答案:B10.設(shè)\(L\)為從\((0,0)\)到\((1,1)\)的直線段,則\(\int_{L}xyds=(\)\)A.\(\frac{1}{3}\)B.\(\frac{1}{4}\)C.\(\frac{1}{5}\)D.\(\frac{1}{6}\)答案:A二、多項(xiàng)選擇題(每題2分,共10題)1.下列函數(shù)中是二元函數(shù)的有(\)A.\(z=x^{2}+y^{2}\)B.\(z=\sqrt{x}+\sqrt{y}\)C.\(z=\frac{1}{x-y}\)D.\(z=\sin(x-y)\)E.\(z=e^{x}+e^{y}\)答案:ABCDE2.下列級(jí)數(shù)收斂的有(\)A.\(\sum_{n=1}^{\infty}\frac{1}{n^{2}}\)B.\(\sum_{n=1}^{\infty}\frac{1}{n}\)C.\(\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n}\)D.\(\sum_{n=1}^{\infty}\frac{1}{n!}\)E.\(\sum_{n=1}^{\infty}\frac{n}{2^{n}}\)答案:ACDE3.設(shè)\(z=f(x,y)\),則全微分\(dz\)存在的充分條件是(\)A.\(f_{x}(x,y)\),\(f_{y}(x,y)\)在點(diǎn)\((x,y)\)連續(xù)B.\(z=f(x,y)\)在點(diǎn)\((x,y)\)可微C.\(\lim\limits_{\Deltax\rightarrow0}\frac{\Deltaz-f_{x}(x,y)\Deltax-f_{y}(x,y)\Deltay}{\sqrt{(\Deltax)^{2}+(\Deltay)^{2}}}=0\)D.\(z=f(x,y)\)的一階偏導(dǎo)數(shù)存在E.\(z=f(x,y)\)在點(diǎn)\((x,y)\)連續(xù)答案:ABC4.下列向量場(chǎng)是保守場(chǎng)的有(\)A.\(\vec{F}(x,y)=(y,x)\)B.\(\vec{F}(x,y)=(x+y,x-y)\)C.\(\vec{F}(x,y)=(x^{2},y^{2})\)D.\(\vec{F}(x,y)=(y\cosx,y\sinx)\)E.\(\vec{F}(x,y)=(e^{x}\cosy,e^{x}\siny)\)答案:AE5.下列曲線積分與路徑無(wú)關(guān)的有(\)A.\(\int_{L}(x+y)dx+(x-y)dy\)在整個(gè)\(xOy\)平面內(nèi)B.\(\int_{L}(x^{2}+y^{2})dx+(2xy)dy\)在整個(gè)\(xOy\)平面內(nèi)C.\(\int_{L}\frac{y}{x^{2}+y^{2}}dx-\frac{x}{x^{2}+y^{2}}dy\)在\(x^{2}+y^{2}>0\)內(nèi)D.\(\int_{L}(2x\siny)dx+(x^{2}\cosy)dy\)在整個(gè)\(xOy\)平面內(nèi)E.\(\int_{L}(e^{x}\siny)dx+(e^{x}\cosy)dy\)在整個(gè)\(xOy\)平面內(nèi)答案:ADE6.對(duì)于二重積分\(\iint_Df(x,y)dxdy\),若\(D\)是由\(y=x^{2}\),\(y=x\)所圍成的區(qū)域,則化為累次積分正確的有(\)A.\(\int_{0}^{1}dx\int_{x^{2}}^{x}f(x,y)dy\)B.\(\int_{0}^{1}dy\int_{y}^{\sqrt{y}}f(x,y)dx\)C.\(\int_{0}^{1}dx\int_{x}^{\sqrt{x}}f(x,y)dy\)D.\(\int_{0}^{1}dy\int_{y^{2}}^{y}f(x,y)dx\)E.\(\int_{-1}^{1}dx\int_{x^{2}}^{x}f(x,y)dy\)答案:AB7.設(shè)\(y=e^{x}\),則下列說法正確的是(\)A.\(y'=e^{x}\)B.\(y''=e^{x}\)C.\(\inte^{x}dx=e^{x}+C\)D.\(\int_{0}^{1}e^{x}dx=e-1\)E.\(y=e^{x}\)是單調(diào)遞增函數(shù)答案:ABCDE8.下列關(guān)于冪級(jí)數(shù)的說法正確的有(\)A.冪級(jí)數(shù)\(\sum_{n=0}^{\infty}a_{n}x^{n}\)在\(x=0\)處一定收斂B.若冪級(jí)數(shù)\(\sum_{n=0}^{\infty}a_{n}x^{n}\)在\(x=x_{0}\)處收斂,則在\(\vertx\vert<\vertx_{0}\vert\)處絕對(duì)收斂C.若冪級(jí)數(shù)\(\sum_{n=0}^{\infty}a_{n}x^{n}\)在\(x=x_{0}\)處發(fā)散,則在\(\vertx\vert>\vertx_{0}\vert\)處發(fā)散D.冪級(jí)數(shù)\(\sum_{n=0}^{\infty}a_{n}x^{n}\)的收斂區(qū)間是關(guān)于原點(diǎn)對(duì)稱的區(qū)間E.冪級(jí)數(shù)\(\sum_{n=0}^{\infty}a_{n}x^{n}\)的和函數(shù)在收斂區(qū)間內(nèi)連續(xù)答案:ABCE9.設(shè)\(u=x^{2}+y^{2}+z^{2}\),則(\)A.\(\frac{\partialu}{\partialx}=2x\)B.\(\frac{\partialu}{\partialy}=2y\)C.\(\frac{\partialu}{\partialz}=2z\)D.\(du=2xdx+2ydy+2zdz\)E.\(\nablau=(2x,2y,2z)\)答案:ABCDE10.設(shè)\(L\)為\(x^{2}+y^{2}=1\)的正向圓周,則(\)A.\(\oint_{L}xdy-ydx=2\pi\)B.\(\oint_{L}x^{2}dx+y^{2}dy=0\)C.\(\oint_{L}(x+y)ds=\sqrt{2}\cdot2\pi\)D.\(\oint_{L}\frac{1}{x^{2}+y^{2}}ds=2\pi\)E.\(\oint_{L}(x^{2}-y^{2})dx+(2xy)dy=0\)答案:ABCDE三、判斷題(每題2分,共10題)1.若\(\sum_{n=1}^{\infty}a_{n}\)收斂,則\(\sum_{n=1}^{\infty}\verta_{n}\vert\)一定收斂。(×)2.函數(shù)\(z=\frac{1}{x-y}\)在\(x=y\)處連續(xù)。(×)3.對(duì)于向量\(\vec{a}=(1,2,3)\),\(\vec=(2,-1,1)\),\(\vec{a}\times\vec=(-1,5,-5)\)。(√)4.若\(f(x)\)在\([a,b]\)上可積,則\(f(x)\)在\([a,b]\)上連續(xù)。(×)5.冪級(jí)數(shù)\(\sum_{n=0}^{\infty}n!x^{n}\)的收斂半徑\(R=0\)。(√)6.設(shè)\(z=f(x,y)\),若\(\frac{\partialz}{\partialx}\),\(\frac{\partialz}{\partialy}\)在點(diǎn)\((x,y)\)存在,則\(z=f(x,y)\)在點(diǎn)\((x,y)\)可微。(×)7.曲線\(y=\lnx\)在\((1,0)\)處的切線方程為\(y=x-1\)。(√)8.若\(\int_{a}^f(x)dx=\int_{a}^g(x)dx\),則\(f(x)=g(x)\)。(×)9.對(duì)于二重積分\(\iint_Df(x,y)dxdy\),當(dāng)\(D\)關(guān)于\(y=x\)對(duì)稱時(shí),\(\iint_Df(x,y)dxdy=\iint_Df(y,x)dxdy\)。(√)10.向量場(chǎng)\(\vec{F}(x,y)=(x^{2},y^{2})\)是有勢(shì)場(chǎng)。(×)四、簡(jiǎn)答題(每題5分,共4題)1.求函數(shù)\(z=x^{3}-3x^{2}-3y^{2}\)的駐點(diǎn)。答案:令\(\frac{\partialz}{\partialx}=3x^{2}-6x=0\),解得\(x=0\)或\(x=2\);\(\frac{\partialz}{\partialy}=-6y=0\),解得\(y=0\)。所以駐點(diǎn)為\((0,0)\)和\((2,0)\)。2.簡(jiǎn)述冪級(jí)數(shù)收斂半徑的求法。答案:對(duì)于冪級(jí)數(shù)\(\sum_{n=0}^{\infty}a_{n}x^{n}\),若\(\lim\limits_{n\rightarrow\infty}\vert\frac{a_{n+1}}{a_{n}}\vert=\rho\)(\(\rho\neq0\)),則收斂半徑\(R=\frac{1}{\rho}\);當(dāng)\(\rho=0\)時(shí),\(R=\infty\);當(dāng)\(\rho=\infty\)時(shí),\(R=0\)。3.計(jì)算\(\int_{0}^{1}x^{2}e^{x}dx\)。答案:利用分部積分法,設(shè)\(u=x^{2}\),\(dv=e^{x}dx\),則\(du=2xdx\),\(v=e^{x}\)。\(\int_{0}^{1}x^{2}e^{x}dx=\left[x^{2}e^{x}\right]_{0}^{1}-2\int_{0}^{1}xe^{x}dx\),再對(duì)\(\int_{0}^{1}xe^{x}dx\)用分部積分法可得結(jié)果為\(e-2\)。4.求曲線\(y=\frac{1}{x}\)在點(diǎn)\((1,1)\)處的曲率。答案:首先\(y'=-\frac{1}{x^{2}}\),\(y''=\frac{2}{x^{3}}\),在點(diǎn)\((1,1)\)處\(y'=-1\),\(y''=2\)。根據(jù)曲率公式\(k=\frac{\verty''\vert}{(1+y'^{2})^{\frac{3}{2}}}\),可得\(k=\frac{\sqrt{2}}{2}\)。五、討論題(每題5分,共4題)1.討論函數(shù)\(z=\frac{1}{(x-1)(y-1)}\)的間斷點(diǎn)。答案:函數(shù)\(z=\frac{1}{(x-1)(y-1)}\)在\

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論