2023-2024學(xué)年四川省綿陽地區(qū)中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第1頁
2023-2024學(xué)年四川省綿陽地區(qū)中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第2頁
2023-2024學(xué)年四川省綿陽地區(qū)中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第3頁
2023-2024學(xué)年四川省綿陽地區(qū)中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第4頁
2023-2024學(xué)年四川省綿陽地區(qū)中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年四川省綿陽地區(qū)中考數(shù)學(xué)對點(diǎn)突破模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為()A.75° B.60° C.55° D.45°2.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間3.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時(shí),頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米4.已知關(guān)于x的方程x2+3x+a=0有一個(gè)根為﹣2,則另一個(gè)根為()A.5 B.﹣1 C.2 D.﹣55.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設(shè)∠CAB=α,那么拉線BC的長度為()A. B. C. D.6.估計(jì)+1的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間7.一個(gè)幾何體的三視圖如圖所示,根據(jù)圖示的數(shù)據(jù)計(jì)算出該幾何體的表面積()A.65π B.90π C.25π D.85π8.的相反數(shù)是()A.6 B.-6 C. D.9.下列各數(shù)中,最小的數(shù)是()A.﹣4B.3C.0D.﹣210.下列計(jì)算正確的是()A.a(chǎn)2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a(chǎn)2?a3=a6 D.a(chǎn)8÷a2=a4二、填空題(共7小題,每小題3分,滿分21分)11.一元二次方程2x2﹣3x﹣4=0根的判別式的值等于_____.12.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.13.如圖,在△ABC中,∠A=70°,∠B=50°,點(diǎn)D,E分別為AB,AC上的點(diǎn),沿DE折疊,使點(diǎn)A落在BC邊上點(diǎn)F處,若△EFC為直角三角形,則∠BDF的度數(shù)為______.14.如圖,已知圓O的半徑為2,A是圓上一定點(diǎn),B是OA的中點(diǎn),E是圓上一動點(diǎn),以BE為邊作正方形BEFG(B、E、F、G四點(diǎn)按逆時(shí)針順序排列),當(dāng)點(diǎn)E繞⊙O圓周旋轉(zhuǎn)時(shí),點(diǎn)F的運(yùn)動軌跡是_________圖形15.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點(diǎn)D,交OB于點(diǎn)C,連接CD交直線OA于點(diǎn)E,若∠B=30°,則線段AE的長為.16.在平面直角坐標(biāo)系xOy中,位于第一象限內(nèi)的點(diǎn)A(1,2)在x軸上的正投影為點(diǎn)A′,則cos∠AOA′=__.17.一組正方形按如圖所示的方式放置,其中頂點(diǎn)B1在y軸上,頂點(diǎn)C1,E1,E2,C2,E3,E4,C3……在x軸上,已知正方形A1B1C1D1的頂點(diǎn)C1的坐標(biāo)是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……則正方形A2018B2018C2018D2018的頂點(diǎn)D2018縱坐標(biāo)是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖1,AB為半圓O的直徑,D為BA的延長線上一點(diǎn),DC為半圓O的切線,切點(diǎn)為C.(1)求證:∠ACD=∠B;(2)如圖2,∠BDC的平分線分別交AC,BC于點(diǎn)E,F(xiàn),求∠CEF的度數(shù).19.(5分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.20.(8分)在正方形ABCD中,M是BC邊上一點(diǎn),且點(diǎn)M不與B、C重合,點(diǎn)P在射線AM上,將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AQ,連接BP,DQ.(1)依題意補(bǔ)全圖1;(2)①連接DP,若點(diǎn)P,Q,D恰好在同一條直線上,求證:DP2+DQ2=2AB2;②若點(diǎn)P,Q,C恰好在同一條直線上,則BP與AB的數(shù)量關(guān)系為:.21.(10分)(1)如圖1,半徑為2的圓O內(nèi)有一點(diǎn)P,切OP=1,弦AB過點(diǎn)P,則弦AB長度的最大值為__________;最小值為___________.圖①(2)如圖2,△ABC是葛叔叔家的菜地示意圖,其中∠ABC=90°,AB=80米,BC=60米,現(xiàn)在他利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔想建的魚塘是四邊形ABCD,且滿足∠ADC=60°,你認(rèn)為葛叔叔的想法能實(shí)現(xiàn)嗎?若能,求出這個(gè)四邊形魚塘面積和周長的最大值;若不能,請說明理由.圖②22.(10分)如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)y=mx與y=n(1)當(dāng)m=1,n=20時(shí).①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.23.(12分)某商場甲、乙、丙三名業(yè)務(wù)員2018年前5個(gè)月的銷售額(單位:萬元)如下表:月份銷售額人員第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根據(jù)上表中的數(shù)據(jù),將下表補(bǔ)充完整:統(tǒng)計(jì)值數(shù)值人員平均數(shù)(萬元)眾數(shù)(萬元)中位數(shù)(萬元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名業(yè)務(wù)員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.24.(14分)如圖,拋物線與x軸相交于A、B兩點(diǎn),與y軸的交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)為(﹣3,0),點(diǎn)C的坐標(biāo)為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點(diǎn)P在拋物線上,且S△POC=4S△BOC,求點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)Q是線段AC上的動點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】

由正方形的性質(zhì)和等邊三角形的性質(zhì)得出∠BAE=150°,AB=AE,由等腰三角形的性質(zhì)和內(nèi)角和定理得出∠ABE=∠AEB=15°,再運(yùn)用三角形的外角性質(zhì)即可得出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【點(diǎn)睛】本題考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、三角形的外角性質(zhì);熟練掌握正方形和等邊三角形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問題的關(guān)鍵.2、C【解析】

求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點(diǎn)睛】本題考查了估算無理數(shù)的大小和二次根式的性質(zhì),解此題的關(guān)鍵是得出<<,題目比較好,難度不大.3、C【解析】

在直角三角形中利用勾股定理計(jì)算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點(diǎn)睛】本題考查勾股定理的運(yùn)用,利用梯子長度不變找到斜邊是關(guān)鍵.4、B【解析】

根據(jù)關(guān)于x的方程x2+3x+a=0有一個(gè)根為-2,可以設(shè)出另一個(gè)根,然后根據(jù)根與系數(shù)的關(guān)系可以求得另一個(gè)根的值,本題得以解決.【詳解】∵關(guān)于x的方程x2+3x+a=0有一個(gè)根為-2,設(shè)另一個(gè)根為m,

∴-2+m=?,

解得,m=-1,

故選B.5、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點(diǎn)睛:本題主要考查解直角三角形的應(yīng)用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關(guān)鍵.6、B【解析】分析:直接利用2<<3,進(jìn)而得出答案.詳解:∵2<<3,∴3<+1<4,故選B.點(diǎn)睛:此題主要考查了估算無理數(shù)的大小,正確得出的取值范圍是解題關(guān)鍵.7、B【解析】

根據(jù)三視圖可判斷該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,再利用勾股定理計(jì)算出母線長,然后求底面積與側(cè)面積的和即可.【詳解】由三視圖可知該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,所以圓錐的母線長==13,所以圓錐的表面積=π×52+×2π×5×13=90π.故選B.【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了三視圖.8、D【解析】

根據(jù)相反數(shù)的定義解答即可.【詳解】根據(jù)相反數(shù)的定義有:的相反數(shù)是.故選D.【點(diǎn)睛】本題考查了相反數(shù)的意義,一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“﹣”號;一個(gè)正數(shù)的相反數(shù)是負(fù)數(shù),一個(gè)負(fù)數(shù)的相反數(shù)是正數(shù),1的相反數(shù)是1.9、A【解析】

有理數(shù)大小比較的法則:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個(gè)負(fù)數(shù),絕對值大的其值反而小,據(jù)此判斷即可【詳解】根據(jù)有理數(shù)比較大小的方法,可得﹣4<﹣2<0<3∴各數(shù)中,最小的數(shù)是﹣4故選:A【點(diǎn)睛】本題考查了有理數(shù)大小比較的方法,解題的關(guān)鍵要明確:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個(gè)負(fù)數(shù),絕對值大的其值反而小10、B【解析】

解:A.a(chǎn)2+a2=2a2,故A錯誤;C、a2a3=a5,故C錯誤;D、a8÷a2=a6,故D錯誤;本題選B.考點(diǎn):合同類型、同底數(shù)冪的乘法、同底數(shù)冪的除法、積的乘方二、填空題(共7小題,每小題3分,滿分21分)11、41【解析】

已知一元二次方程的根判別式為△=b2﹣4ac,代入計(jì)算即可求解.【詳解】依題意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判別式為:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案為:41【點(diǎn)睛】本題考查了一元二次方程的根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2﹣4ac是解決問題的關(guān)鍵.12、-3<x<1【解析】試題分析:根據(jù)拋物線的對稱軸為x=﹣1,一個(gè)交點(diǎn)為(1,0),可推出另一交點(diǎn)為(﹣3,0),結(jié)合圖象求出y>0時(shí),x的范圍.解:根據(jù)拋物線的圖象可知:拋物線的對稱軸為x=﹣1,已知一個(gè)交點(diǎn)為(1,0),根據(jù)對稱性,則另一交點(diǎn)為(﹣3,0),所以y>0時(shí),x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點(diǎn):二次函數(shù)的圖象.13、110°或50°.【解析】

由內(nèi)角和定理得出∠C=60°,根據(jù)翻折變換的性質(zhì)知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°兩種情況,先求出∠DFC度數(shù),繼而由∠BDF=∠DFC﹣∠B可得答案.【詳解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性質(zhì)知∠DFE=∠A=70°,分兩種情況討論:①當(dāng)∠EFC=90°時(shí),∠DFC=∠DFE+∠EFC=160°,則∠BDF=∠DFC﹣∠B=110°;②當(dāng)∠FEC=90°時(shí),∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;綜上:∠BDF的度數(shù)為110°或50°.故答案為110°或50°.【點(diǎn)睛】本題考查的是圖形翻折變換的性質(zhì)及三角形內(nèi)角和定理,熟知折疊的性質(zhì)、三角形的內(nèi)角和定理、三角形外角性質(zhì)是解答此題的關(guān)鍵.14、圓【解析】

根據(jù)題意作圖,即可得到點(diǎn)F的運(yùn)動軌跡.【詳解】如圖,根據(jù)題意作下圖,可知F的運(yùn)動軌跡為圓⊙O’.【點(diǎn)睛】此題主要考查動點(diǎn)的作圖問題,解題的關(guān)鍵是根據(jù)題意作出相應(yīng)的圖形,方可判斷.15、【解析】

要求AE的長,只要求出OA和OE的長即可,要求OA的長可以根據(jù)∠B=30°和OB的長求得,OE可以根據(jù)∠OCE和OC的長求得.【詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點(diǎn)晴】切線的性質(zhì)16、.【解析】

依據(jù)點(diǎn)A(1,2)在x軸上的正投影為點(diǎn)A′,即可得到A'O=1,AA'=2,AO=,進(jìn)而得出cos∠AOA′的值.【詳解】如圖所示,點(diǎn)A(1,2)在x軸上的正投影為點(diǎn)A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【點(diǎn)睛】本題主要考查了平行投影以及平面直角坐標(biāo)系,過已知點(diǎn)向坐標(biāo)軸作垂線,然后求出相關(guān)的線段長,是解決這類問題的基本方法和規(guī)律.17、×()2【解析】

利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進(jìn)而得出變化規(guī)律即可得出答案.【詳解】解:∵∠B1C1O=60°,C1O=,∴B1C1=1,∠D1C1E1=30°,∵sin∠D1C1E1=,∴D1E1=,∵B1C1∥B2C2∥B3C3∥…∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…∴B2C2=,B3C3=.故正方形AnBnCnDn的邊長=()n-1.∴B2018C2018=()2.∴D2018E2018=×()2,∴D的縱坐標(biāo)為×()2,故答案為×()2.【點(diǎn)睛】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)∠CEF=45°.【解析】試題分析:(1)連接OC,根據(jù)切線的性質(zhì)和直徑所對的圓周角是直角得出∠DCO=∠ACB=90°,然后根據(jù)等角的余角相等即可得出結(jié)論;(2)根據(jù)三角形的外角的性質(zhì)證明∠CEF=∠CFE即可求解.試題解析:(1)證明:如圖1中,連接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切線,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直徑,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.19、(1)見解析;(2)1【解析】

(1)由矩形的性質(zhì)可知∠A=∠C=90°,由翻折的性質(zhì)可知∠A=∠F=90°,從而得到∠F=∠C,依據(jù)AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據(jù)AB=4,tan∠ADB=,即可得到DC,BC的長,然后再Rt△EDC中利用勾股定理列方程,可求得BE的長,從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設(shè)BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【點(diǎn)睛】本題考查了折疊的性質(zhì)、全等三角形的判定和性質(zhì)以及勾股定理的綜合運(yùn)用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.20、(1)詳見解析;(1)①詳見解析;②BP=AB.【解析】

(1)根據(jù)要求畫出圖形即可;(1)①連接BD,如圖1,只要證明△ADQ≌△ABP,∠DPB=90°即可解決問題;②結(jié)論:BP=AB,如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【詳解】(1)解:補(bǔ)全圖形如圖1:(1)①證明:連接BD,如圖1,∵線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AQ,∴AQ=AP,∠QAP=90°,∵四邊形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:結(jié)論:BP=AB.理由:如圖3中,連接AC,延長CD到N,使得DN=CD,連接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【點(diǎn)睛】本題考查正方形的性質(zhì),旋轉(zhuǎn)變換、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸21、(1)弦AB長度的最大值為4,最小值為2;(2)面積最大值為(2500+2400)平方米,周長最大值為340米.【解析】

(1)當(dāng)AB是過P點(diǎn)的直徑時(shí),AB最長;當(dāng)AB⊥OP時(shí),AB最短,分別求出即可.(2)如圖在△ABC的一側(cè)以AC為邊做等邊三角形AEC,再做△AEC的外接圓,則滿足∠ADC=60°的點(diǎn)D在優(yōu)弧AEC上(點(diǎn)D不與A、C重合),當(dāng)D與E重合時(shí),S△ADC最大值=S△AEC,由S△ABC為定值,故此時(shí)四邊形ABCD的面積最大,再根據(jù)勾股定理和等邊三角形的性質(zhì)求出此時(shí)的面積與周長即可.【詳解】(1)(1)當(dāng)AB是過P點(diǎn)的直徑時(shí),AB最長=2×2=4;當(dāng)AB⊥OP時(shí),AB最短,AP=∴AB=2(2)如圖,在△ABC的一側(cè)以AC為邊做等邊三角形AEC,再做△AEC的外接圓,當(dāng)D與E重合時(shí),S△ADC最大故此時(shí)四邊形ABCD的面積最大,∵∠ABC=90°,AB=80,BC=60∴AC=∴周長為AB+BC+CD+AE=80+60+100+100=340(米)S△ADC=S△ABC=∴四邊形ABCD面積最大值為(2500+2400)平方米.【點(diǎn)睛】此題主要考查圓的綜合利用,解題的關(guān)鍵是熟知圓的性質(zhì)定理與垂徑定理.22、(1)①直線AB的解析式為y=﹣12【解析】分析:(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;(2)先確定出B(1,m4),進(jìn)而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數(shù)為y=4x∴B(1,1),當(dāng)y=2時(shí),∴2=4x∴x=2,∴A(2,2),設(shè)直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點(diǎn)P是線段BD的中點(diǎn),∴P(1,3),當(dāng)y=3時(shí),由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當(dāng)四邊形ABCD是正方形,∴PA=PB=PC=PD,(設(shè)為t,t≠0),當(dāng)x=1時(shí),y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點(diǎn)D的縱坐標(biāo)為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點(diǎn)睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.23、(1)8.2;9;9;6.4;(2)贊同甲的說法.理由見解析.【解析】

(1)利用平均數(shù)、眾數(shù)、中位數(shù)的定義和方差的計(jì)算公式求解;(2)利用甲的平均數(shù)大得到總營業(yè)額高,方差小,營業(yè)額穩(wěn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論