江蘇省無錫市港下中學2025屆數(shù)學高二第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
江蘇省無錫市港下中學2025屆數(shù)學高二第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
江蘇省無錫市港下中學2025屆數(shù)學高二第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
江蘇省無錫市港下中學2025屆數(shù)學高二第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
江蘇省無錫市港下中學2025屆數(shù)學高二第二學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江蘇省無錫市港下中學2025屆數(shù)學高二第二學期期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的定義域為R,則實數(shù)a的取值范圍為()A. B.(0,1)C. D.(﹣1,0)2.某物體的位移(米)與時間(秒)的關系為,則該物體在時的瞬時速度是()A.米/秒 B.米/秒 C.米/秒 D.米/秒3.二項式的展開式的各項中,二項式系數(shù)最大的項為()A. B.和C.和 D.4.已知拋物線的焦點為,過的直線交拋物線于兩點(在軸上方),延長交拋物線的準線于點,若,,則拋物線的方程為()A. B. C. D.5.已知函數(shù)f(x)=ax,其中a>0,且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))為端點的線段的中點在y軸上,那么f(x1)·f(x2)等于()A.1 B.a(chǎn) C.2 D.a(chǎn)26.“楊輝三角”是中國古代重要的數(shù)學成就,在南宋數(shù)學家楊輝所著的《詳解九章算法》一書中出現(xiàn),它比西方的“帕斯卡三角形”早了300多年,如圖是楊輝三角數(shù)陣,記為圖中第行各個數(shù)之和,為的前項和,則A.1024 B.1023 C.512 D.5117.下列關于獨立性檢驗的敘述:①常用等高條形圖展示列聯(lián)表數(shù)據(jù)的頻率特征;②獨立性檢驗依據(jù)小概率原理;③樣本不同,獨立性檢驗的結(jié)論可能有差異;④對分類變量與的隨機變量的觀測值來說,越小,與有關系的把握程度就越大.其中正確的個數(shù)為()A.1 B.2 C.3 D.48.已知,,則等于()A. B. C. D.9.已知等差數(shù)列的前項和為,,且,則()A.6 B.7 C.8 D.910.由曲線,所圍成圖形的面積是()A. B. C. D.11.已知將函數(shù)的圖象向左平移個單位長度后得到的圖象,則在上的值域為()A. B. C. D.12.設函數(shù),則的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知可導函數(shù)的定義域為,其導函數(shù)滿足,則不等式的解集為__________.14.從3名男同學和2名女同學中任選2名同學參加志愿者服務,則選出的2名同學中至少有1名女同學的概率是_____.15.函數(shù)f(x)由下表定義:x25314f(x)12345若a0=5,an+1=f(an),16.若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓焦距與長軸之比的比值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=-ln(x+m).(1)設x=0是f(x)的極值點,求m,并討論f(x)的單調(diào)性;(2)當m≤2時,證明f(x)>0.18.(12分)阿基米德是古希臘偉大的哲學家、數(shù)學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調(diào)查中學生對這一偉大科學家的了解程度,某調(diào)查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調(diào)查結(jié)果如下:0項1項2項3項4項5項5項以上理科生(人)110171414104文科生(人)08106321(1)完成如下列聯(lián)表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關?比較了解不太了解合計理科生文科生合計(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.(i)求抽取的文科生和理科生的人數(shù);(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學期望.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.828,.19.(12分)張華同學上學途中必須經(jīng)過四個交通崗,其中在崗遇到紅燈的概率均為,在崗遇到紅燈的概率均為.假設他在4個交通崗遇到紅燈的事件是相互獨立的,X表示他遇到紅燈的次數(shù).(1)若,就會遲到,求張華不遲到的概率;(2)求EX.20.(12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB="A"A1,∠BAA1=60°.(Ⅰ)證明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.21.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量(單位:瓶)為多少時,的數(shù)學期望達到最大值?22.(10分)已知函數(shù),其中,且曲線在點處的切線垂直于直線.(1)求的值;(2)求函數(shù)的單調(diào)區(qū)間與極值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

首先由題意可得,再由對數(shù)式的運算性質(zhì)變形,然后求解對數(shù)不等式得答案.【詳解】由題意可得,第一個式子解得或;第二個式子化簡為,令,則,解得或,則或,則或.即或.綜上,實數(shù)的取值范圍為.故選:A.本題主要考查以函數(shù)定義域為背景的恒成立問題,二次型函數(shù)的恒成立問題一般借助判別式進行處理,本題同時兼顧考查了對數(shù)的運算性質(zhì),綜合性較強,側(cè)重考查數(shù)學運算的核心素養(yǎng).2、B【解析】

根據(jù)導數(shù)的物理意義,求導后代入即可.【詳解】由得:當時,即該物體在時的瞬時速度為:米/秒本題正確結(jié)果:本題考查導數(shù)的物理意義,屬于基礎題.3、C【解析】

先由二項式,確定其展開式各項的二項式系數(shù)為,進而可確定其最大值.【詳解】因為二項式展開式的各項的二項式系數(shù)為,易知當或時,最大,即二項展開式中,二項式系數(shù)最大的為第三項和第四項.故第三項為;第四項為.故選C本題主要考查二項式系數(shù)最大的項,熟記二項式定理即可,屬于??碱}型.4、C【解析】分析:先求得直線直線AB的傾斜角為,再聯(lián)立直線AB的方程和拋物線的方程求出點A,B的坐標,再求出點C的坐標,得到AC||x軸,得到,即得P的值和拋物線的方程.詳解:設=3a,設直線AB的傾斜角為,所以直線的斜率為.所以直線AB的方程為.聯(lián)立所以,所以直線OB方程為,令x=-所以故答案為:C.點睛:(1)本題主要考查拋物線的幾何性質(zhì),考查直線和拋物線的位置關系和拋物線方程的求法,意在考查學生對這些知識的掌握水平和分析推理能力.(2)解答圓錐曲線題目時,看到曲線上的點到焦點的距離(焦半徑),要馬上聯(lián)想到利用圓錐曲線的定義解答.5、A【解析】

由已知可得,再根據(jù)指數(shù)運算性質(zhì)得解.【詳解】因為以P(x1,f(x1)),Q(x2,f(x2))為端點的線段的中點在y軸上,所以.因為f(x)=ax,所以f(x1)·f(x2)=.故答案為:A本題主要考查指數(shù)函數(shù)的圖像性質(zhì)和指數(shù)運算,意在考查學生對這些知識的掌握水平.6、B【解析】

依次算出前幾行的數(shù)值,然后歸納總結(jié)得出第行各個數(shù)之和的通項公式,最后利用數(shù)列求和的公式,求出【詳解】由題可得:,,,,,依次下推可得:,所以為首項為1,公比為2的等比數(shù)列,故;故答案選B本題主要考查楊輝三角的規(guī)律特點,等比數(shù)列的定義以及前項和的求和公式,考查學生歸納總結(jié)和計算能力,屬于基礎題。7、C【解析】分析:根據(jù)獨立性檢驗的定義及思想,可得結(jié)論.詳解:①常用等高條形圖展示列聯(lián)表數(shù)據(jù)的頻率特征;正確;②獨立性檢驗依據(jù)小概率原理;正確;③樣本不同,獨立性檢驗的結(jié)論可能有差異;正確;④對分類變量與的隨機變量的觀測值來說,越大,與有關系的把握程度就越大.故④錯誤.故選C.點睛:本題考查了獨立性檢驗的原理,考查了推理能力,屬于基礎題.8、B【解析】

根據(jù)余弦的半角公式化簡、運算,即可求解,得到答案.【詳解】由題意,可知,則,又由半角公式可得,故選B.本題主要考查了三角函數(shù)的化簡、求值問題,其中解答中熟練應用余弦函數(shù)的半角公式,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.9、D【解析】分析:設等差數(shù)列的公差為d,由且,可得,,解出即可得出.詳解:設等差數(shù)列的公差為d,由且,,,解得,則.故選:D.點睛:(1)等差數(shù)列的通項公式及前n項和公式,共涉及五個量a1,an,d,n,Sn,知其中三個就能求另外兩個,體現(xiàn)了用方程的思想來解決問題.(2)數(shù)列的通項公式和前n項和公式在解題中起到變量代換作用,而a1和d是等差數(shù)列的兩個基本量,用它們表示已知和未知是常用方法.10、A【解析】

先計算交點,再根據(jù)定積分計算面積.【詳解】曲線,,交點為:圍成圖形的面積:故答案選A本題考查了定積分的計算,意在考查學生的計算能力.11、B【解析】解析:因,故,因,故,則,所以,應選答案B.12、A【解析】

根據(jù)可知函數(shù)為奇函數(shù),根據(jù)奇函數(shù)性質(zhì),排除;根據(jù)時,的符號可排除,從而得到結(jié)果.【詳解】,為上的奇函數(shù),圖象關于原點對稱,且,可排除,;又,當時,,當時,,可排除,知正確.故選:.本題考查函數(shù)圖象的辨析問題,解決此類問題通常采用排除法來進行求解,排除依據(jù)通常為:奇偶性、特殊值符號和單調(diào)性.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

構(gòu)造函數(shù):根據(jù)其導函數(shù)判斷單調(diào)性,再通過特殊值解得不等式.【詳解】函數(shù)的定義域為構(gòu)造函數(shù):已知:所以,遞減.即故答案為本題考查了函數(shù)的構(gòu)造,根據(jù)函數(shù)單調(diào)性解不等式,技巧性較強,構(gòu)造函數(shù)是解題的關鍵.14、.【解析】

先求事件的總數(shù),再求選出的2名同學中至少有1名女同學的事件數(shù),最后根據(jù)古典概型的概率計算公式得出答案.【詳解】從3名男同學和2名女同學中任選2名同學參加志愿服務,共有種情況.若選出的2名學生恰有1名女生,有種情況,若選出的2名學生都是女生,有種情況,所以所求的概率為.計數(shù)原理是高考考查的重點內(nèi)容,考查的形式有兩種,一是獨立考查,二是與古典概型結(jié)合考查,由于古典概型概率的計算比較明確,所以,計算正確基本事件總數(shù)是解題的重要一環(huán).在處理問題的過程中,應注意審清題意,明確“分類”“分步”,根據(jù)順序有無,明確“排列”“組合”.15、1【解析】

由表格可知:f(5)=2,f(2)=1,f(1)=4,f(4)=5,由于a0=5,an+1=f(an),n=0【詳解】由表格可知:f(5)=2,f(2)=1,f(1)=4,f(4)=5.又a0=5,an+1=f(a∴a1=f(a0)=f(5)=2,a2=f(a∴a∴a本題考查了函數(shù)的表示方法、數(shù)列的周期性,考查了歸納推理以及利用遞推公式求數(shù)列中的項,屬于中檔題.利用遞推關系求數(shù)列中的項常見思路為:(1)項的序號較小時,逐步遞推求出即可;(2)項的序數(shù)較大時,考慮證明數(shù)列是等差、等比數(shù)列,或者是周期數(shù)列.16、【解析】

根據(jù)橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,列出關于的關系式再求解即可.【詳解】設橢圓長軸長,短軸的長,焦距為,則有,故,所以,故,化簡得,即,故,故橢圓焦距與長軸之比的比值是.故答案為:本題主要考查了橢圓的基本量的基本關系與離心率的計算,屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在上是減函數(shù);在上是增函數(shù)(2)見解析【解析】

(1).由x=2是f(x)的極值點得f'(2)=2,所以m=1.于是f(x)=ex-ln(x+1),定義域為(-1,+∞),.函數(shù)在(-1,+∞)上單調(diào)遞增,且f'(2)=2,因此當x∈(-1,2)時,f'(x)<2;當x∈(2,+∞)時,f'(x)>2.所以f(x)在(-1,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增.(2)當m≤2,x∈(-m,+∞)時,ln(x+m)≤ln(x+2),故只需證明當m=2時,f(x)>2.當m=2時,函數(shù)在(-2,+∞)上單調(diào)遞增.又f'(-1)<2,f'(2)>2,故f'(x)=2在(-2,+∞)上有唯一實根,且.當時,f'(x)<2;當時,f'(x)>2,從而當時,f(x)取得最小值.由f'(x2)=2得=,,故.綜上,當m≤2時,f(x)>2.18、(1)見解析;(2)(i)文科生3人,理科生7人(ii)見解析【解析】

(1)寫出列聯(lián)表后可計算,根據(jù)預測值表可得沒有的把握認為,了解阿基米德與選擇文理科有關.(2)(i)文科生與理科生的比為,據(jù)此可計算出文科生和理科生的人數(shù).(ii)利用超幾何分布可計算的分布列及其數(shù)學期望.【詳解】解:(1)依題意填寫列聯(lián)表如下:比較了解不太了解合計理科生422870文科生121830合計5446100計算,沒有的把握認為,了解阿基米德與選擇文理科有關.(2)(i)抽取的文科生人數(shù)是(人),理科生人數(shù)是(人).(ii)的可能取值為0,1,2,3,則,,,.其分布列為0123所以.本題考查獨立性檢驗、分層抽樣及超幾何分布,注意在計算離散型隨機變量的概率時,注意利用常見的概率分布列來簡化計算(如二項分布、超幾何分布等).19、(1)(2)【解析】

(1);.故張華不遲到的概率為.(2)的分布列為

0

1

2

3

4

.20、(1)見解析(2).【解析】

試題分析:(Ⅰ)取AB的中點O,連接OC,OA1,A1B,由已知可證OA1⊥AB,AB⊥平面OA1C,進而可得AB⊥A1C;(Ⅱ)易證OA,OA1,OC兩兩垂直.以O為坐標原點,的方向為x軸的正向,||為單位長,建立坐標系,可得,,的坐標,設=(x,y,z)為平面BB1C1C的法向量,則,可解得=(,1,﹣1),可求|cos<,>|,即為所求正弦值.解:(Ⅰ)取AB的中點O,連接OC,OA1,A1B,因為CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B為等邊三角形,所以OA1⊥AB,又因為OC∩OA1=O,所以AB⊥平面OA1C,又A1C?平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交線為AB,所以OC⊥平面AA1B1B,故OA,OA1,OC兩兩垂直.以O為坐標原點,的方向為x軸的正向,||為單位長,建立如圖所示的坐標系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),則=(1,0,),=(﹣1,,0),=(0,﹣,),設=(x,y,z)為平面BB1C1C的法向量,則,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因為直線與法向量的余弦值的絕對值等于直線與平面的正弦值,故直線A1C與平面BB1C1C所成角的正弦值為:.考點:用空間向量求直線與平面的夾角;直線與平面垂直的性質(zhì);平面與平面垂直的判定;直線與平面所成的角.21、(1)分布列見解析;(2)520.【解析】分析:(1)根據(jù)題意所有的可能取值為200,300,500,由表格數(shù)據(jù)知,,;(2)分兩種情況:當時,當時,分別得到利潤表達式.詳解:(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論