




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖南邵陽縣德望中學(xué)高三數(shù)學(xué)試題2月月考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.2.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.3.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.4.已知拋物線的焦點為,對稱軸與準(zhǔn)線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°5.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣856.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,27.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,則實數(shù)的取值范圍為()A. B. C. D.8.古希臘數(shù)學(xué)家畢達哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.9.若復(fù)數(shù)滿足,則對應(yīng)的點位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)11.已知函數(shù)若函數(shù)在上零點最多,則實數(shù)的取值范圍是()A. B. C. D.12.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長為2,側(cè)棱長為,為中點,則三棱錐的體積為________.14.已知等比數(shù)列的前項和為,,且,則__________.15.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點,若點的坐標(biāo)為,則的取值范圍為__________.16.某校高二(4)班統(tǒng)計全班同學(xué)中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學(xué)用餐平均用時為____分鐘.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標(biāo)出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.18.(12分)一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.(1)當(dāng)取何值時,有3個坑要補播種的概率最大?最大概率為多少?(2)當(dāng)時,用表示要補播種的坑的個數(shù),求的分布列與數(shù)學(xué)期望.19.(12分)已知函數(shù).(1)當(dāng)時,解關(guān)于x的不等式;(2)當(dāng)時,若對任意實數(shù),都成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù)(,為自然對數(shù)的底數(shù)),.(1)若有兩個零點,求實數(shù)的取值范圍;(2)當(dāng)時,對任意的恒成立,求實數(shù)的取值范圍.21.(12分)某學(xué)校為了解全校學(xué)生的體重情況,從全校學(xué)生中隨機抽取了100人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)(2)從全校學(xué)生中隨機抽取3名學(xué)生,記為體重在的人數(shù),求的分布列和數(shù)學(xué)期望;(3)由頻率分布直方圖可以認為,該校學(xué)生的體重近似服從正態(tài)分布.若,則認為該校學(xué)生的體重是正常的.試判斷該校學(xué)生的體重是否正常?并說明理由.22.(10分)已知函數(shù),,若存在實數(shù)使成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當(dāng)時,,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2.B【解析】
計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計算能力和空間想象能力.3.D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學(xué)生的運算能力,屬于中檔題.4.C【解析】
如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.5.D【解析】
由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.6.C【解析】
先求出集合U,再根據(jù)補集的定義求出結(jié)果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關(guān)鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.7.B【解析】
依據(jù)線性約束條件畫出可行域,目標(biāo)函數(shù)恒過,再分別討論的正負進一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對應(yīng)的平面區(qū)域,如圖所示:其中,直線過定點,當(dāng)時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當(dāng)時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當(dāng)時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數(shù)的取值范圍為,故選:B.【點睛】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結(jié)合思想,屬于中檔題8.B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.9.D【解析】
利用復(fù)數(shù)模的計算、復(fù)數(shù)的除法化簡復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對應(yīng)的點,對應(yīng)的點位于復(fù)平面的第四象限.故選:D.【點睛】本題考查復(fù)數(shù)模的計算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運算求解能力,屬于基礎(chǔ)題.10.C【解析】
根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎(chǔ)題.11.D【解析】
將函數(shù)的零點個數(shù)問題轉(zhuǎn)化為函數(shù)與直線的交點的個數(shù)問題,畫出函數(shù)的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結(jié)合,即可求解.【詳解】由圖知與有個公共點即可,即,當(dāng)設(shè)切點,則,.故選:D.【點睛】本題考查了函數(shù)的零點個數(shù)的問題,曲線的切線問題,注意運用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.12.B【解析】
由,可得,解出即可判斷出結(jié)論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數(shù)量積運算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
試題分析:因為正三棱柱的底面邊長為,側(cè)棱長為為中點,所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點:幾何體的體積的計算.14.【解析】
由題意知,繼而利用等比數(shù)列的前項和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.【點睛】本題考查了等比數(shù)列的通項公式和求和公式,屬于中檔題.15.【解析】
由正弦定理可得點在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點在曲線上,設(shè),則,,又,,因為,則,即的取值范圍為.故答案為:.【點睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運算,考查學(xué)生計算能力,有一定的綜合性,但難度不大.16.7.5【解析】
分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導(dǎo)致計算出錯.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2).【解析】
(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標(biāo)系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.18.(1)當(dāng)或時,有3個坑要補播種的概率最大,最大概率為;(2)見解析.【解析】
(1)將有3個坑需要補種表示成n的函數(shù),考查函數(shù)隨n的變化情況,即可得到n為何值時有3個坑要補播種的概率最大.(2)n=1時,X的所有可能的取值為0,1,2,3,1.分別計算出每個變量對應(yīng)的概率,列出分布列,求期望即可.【詳解】(1)對一個坑而言,要補播種的概率,有3個坑要補播種的概率為.欲使最大,只需,解得,因為,所以當(dāng)時,;當(dāng)時,;所以當(dāng)或時,有3個坑要補播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數(shù)學(xué)期望.【點睛】本題考查了古典概型的概率求法,離散型隨機變量的概率分布,二項分布,主要考查簡單的計算,屬于中檔題.19.(1)(2)【解析】
(1)當(dāng)時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,求得的最小值,進而求得的取值范圍.【詳解】(1)當(dāng)時,由得由得解:,得∴當(dāng)時,關(guān)于的不等式的解集為(2)①當(dāng)時,,所以在上是減函數(shù),在是增函數(shù),所以,由題設(shè)得,解得.②當(dāng)時,同理求得.綜上所述,的取值范圍為.【點睛】本小題主要考查含有一個絕對值不等式的求法,考查利用零點分段法解含有兩個絕對值的不等式,屬于中檔題.20.(1);(2)【解析】
(1)將有兩個零點轉(zhuǎn)化為方程有兩個相異實根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問題轉(zhuǎn)化為對一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【詳解】(1)有兩個零點關(guān)于的方程有兩個相異實根由,知有兩個零點有兩個相異實根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當(dāng)時,,當(dāng)時,當(dāng)時,有兩個零點時,實數(shù)的取值范圍為;(2)當(dāng)時,,原命題等價于對一切恒成立對一切恒成立.令令,,則在上單增又,,使即①當(dāng)時,,當(dāng)時,,即在遞減,在遞增,由①知函數(shù)在單調(diào)遞增即,實數(shù)的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.21.(1)60;25(2)見解析,2.1(3)可以認為該校學(xué)生的體重是正常的.見解析【解析】
(1)根據(jù)頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進而可求出分布列以及數(shù)學(xué)期望;(3)由第一問可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學(xué)生中隨機抽取1人,體重在的概率為0.7.隨機拍取3人,相當(dāng)于3次獨立重復(fù)實驗,隨機交量服從二項分布,則,,,,所以的分布
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年公考時政??碱}50道及答案
- 中級鉗工應(yīng)知試題及答案
- 音樂知識考核試題及答案
- 海姆立克急救法測試題(附答案)
- 2025全國農(nóng)民科學(xué)素質(zhì)網(wǎng)絡(luò)競賽知識試題庫及答案
- 2025年《突發(fā)事件應(yīng)對法》知識考試題庫(含答案)
- (2025)班組級安全培訓(xùn)考試題庫及參考答案
- 臨床侵入性操作中的MDRO感染防控相關(guān)試題及答案
- 標(biāo)準(zhǔn)化課件文檔
- 化纖聚酯知識培訓(xùn)課件
- 2025年長沙市中考物理試卷真題(含答案)
- 建筑工地駐場人員管理辦法及流程
- 外科術(shù)后康復(fù)
- 2025年全國工會系統(tǒng)經(jīng)審業(yè)務(wù)技能大賽知識總題庫(1800題)-中部分
- 口腔科主任述職報告
- 心臟驟停的急救及處理
- 紅十字急救包扎技術(shù)培訓(xùn)課件
- 狂犬處置門診管理制度
- 營養(yǎng)科專案管理制度
- 達州國企考試試題及答案
- 2025四川省人力資源和社會保障廳制勞動合同書
評論
0/150
提交評論