




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Federated
Learning聯(lián)邦學(xué)習(xí)
口 CommonTamperingandDeepfakes口 ImageManipulationDetection口 VideoManipulationDetectionThisWeek口 FederatedLearning口 PrivacyinFederatedLearning口 RobustnessinFederatedLearning口 ChallengesandFutureResearchTraditionalMachineLearningDataModelDataandmodelinonesingleplaceTraditionalMachineLearningDataModelWhat
if
we
need
more
data?DataGatheringUsingmultipleGPUsFederatedLearning:Whatisit?
Nextwordpredictiononmobile.
HorizontalFL(橫著切):samefeatures,differentsamplesFederatedLearning:TypesVerticalFL(縱著切):samesamples,differentfeaturesFederatedLearning:Types
FederatedLearning:TypesFederatedTransferLearning:differentsamples,differentfeatures
CompareDifferentParadigms
CompareDifferentParadigms
SplitLearningvsFederatedLearningFederatedLearningFrameworksHE:homomorphicencryption SS:secretSharingObjectivesandUpdatesinFLGlobalobjectiveLocalobjective:LocalUpdates:GlobalAggregation(e.g.FedAvg):FederatedLearning–MajorChallengesExpensiveCommunicationSystemsHeterogeneityStatisticalHeterogeneityPrivacyandSecurityConcerns
FederatedLearning-Horizontal
HFLcanfurtherbedividedinto…?PrivacyandSecurityThreatsLyuetal.“Privacyandrobustnessinfederatedlearning:Attacksanddefenses.”TNNLS,2022.SummaryofThreatModelsFLserver(insider)FLparticipants(insider)Eavesdroppers(outsider)Serviceusers(outsider)□InsidervsOutsider □InsiderAttacksByzantine:theworstattacker,knowseverythingaboutthesystem,doesnotobeytheprotocol,sendarbitraryupdates,evencolludewitheachother.Sybil:takingoverthenetworkbysimulatingmanydummyparticipants,out-votethehonestusersSemi-honestvsMaliciousSemi-honestsettingMalicioussettingTraining-timevsTest-timeStealprivatedata,stealmodel,corruptthemodel(trainingtime)Adversarialattack(testtime)SummaryofAttacksExistingattacksagainstserver-basedFLPoisoningAttacksDatapoisoningvsmodel(weight)poisoningDataPoisoningAttacksinTraditionalML□Dirty-labelPoisoningLabelflipping(onlychangelabels)Dirty-labelbackdoor(changeinputsandlabels)Clean-labelPoisoningClean-labelbackdoor(onlychangeinputs)DataPoisoningAttacksinTraditionalMLAsimplepatterncanmakethemodeltomemorizeFLPoisoningAttacks–ModelPoisoningMaincharacteristics:ChangelocalmodelweightsMostlyByzantineattack(attackercandoanythingtotheweights)CanattackByzantine-robustaggregationmechanismssuchasKrumandcoordinate-wisemedianinsteadofweightedaveragingKrum:PrivacyAttacksForeverycommunicationround,localclientshavethechancetoreverseengineerothers’gradients.Fromthereversedgradients,reverseengineer:RepresentationsMembershipPropertiesSensitiveattributesInVFL:featuresPrivacyAttacks–InferenceAttacksDeepmodelsundertheGAN:informationleakagefromcollaborativedeeplearning,CCS2017InferenceclassrepresentationsusingGANsCIFAR-10horseclassReconstructAlice’sfaceimagePrivacyAttacks–InferenceAttacksComprehensiveprivacyanalysisofdeeplearning:Passiveandactivewhite-boxinferenceattacksagainstcentralizedandfederatedlearning,S&P,2019Inferencemembership:Passiveattacks:observeandinference.Activeattacks:influencethetargetmodelinordertoextractmoreinformation.WeaknessofFL:FLcreatesanenvironmentfor(almost)white-boxattacksPrivacyAttacks–InferenceAttacksOtherinferenceattacks:inferringproperties,trainingdata,labels...DeepLeakagefromGradient(DLG)ImprovedDeepLeakagefromGradient(iDLG)…Defenses–PrivacyDefenseHomomorphic
Encryption:RSAEl
GamalPaillier…Homomorphic
properties:Allows
computation
directly
onencrypted
data(“可算不可見”)Needs
to
be
designed
for
eachalgorithmA
side
note:
attacking
encrypted
FL
is
challengingbut
still
possible!Defenses–PrivacyDefense2.
SecureMultipartyComputation(SMC,Yaosharing):SecureML(data-independentofflinephase+fastonlinephase)Offlinemultiplicationtriplets,truncate,sharingCharacteristics:HighlevelprivacyHighcomputationandcommunicationcostYao'sMillionaires'problemProtocolsforSecureComputations,AndrewChi-ChihYao,1982,UCBerkeleyDefenses–PrivacyDefense2.DifferentialPrivacy(DP):TypesofDP:LocalDPCentralizedDPDistributedDPDefenses–PrivacyDefenseDataflowofstatisticsunderLDP2.DifferentialPrivacy(DP):Defenses–PrivacyDefense2.DifferentialPrivacy(DP):TypesoffrequencyestimationDefenses–PrivacyDefense2.DifferentialPrivacy(DP):Real-worldapplications.Vanilla
FLM:ADPmechanismCentralized
DPM:ADPmechanismLocal
DPM:ADPmechanismE:encryptionD:decryptionDistributed
DPDefenses–ByzantineDefenseAlgorithm:Krum(forByzantinerobustness)Setting:nparticipants,fareByzantine,with??≥????+??Atcommunicationroundt,?? ?? ??serverreceives{????,????,…,????}foreach????:??selecttheclosest(L2distance)n-f-2intoset????compute??????????????=∑?? ??∈???? ????????????? ????????????=???=argmin{?????????????? ,…,??????????????}updateglobalparameter:????.??=????+??????????Blanchardetal.“Machinelearningwithadversaries:Byzantinetolerantgradientdescent.”NeurIPS,2017.Defenses–ByzantineDefenseAlgorithm:Krum(forByzantinerobustness)Blanchard
et
al.
“Machine
learning
with
adversaries:
Byzantine
tolerant
gradient
descent.”
NeurIPS,
2017.紅色:攻擊梯度藍色:真實梯度黑色:本地梯度黑色曲線:損失函數(shù)Defenses–ByzantineDefenseMorerobustaggregationmethods:Multi-Krum=Krum+Averaging=Krumrobustness+increasedconvergencespeedcoordinate-wisemedian,coordinate-wisetrimmedmeanmedianisnotgoodforconvergenceBulyan=Krum+trimmedmedianMedianandgeometric-median(RobustFederatedAggregation)RFA:approximategeometricmedian(notrobusttoByzantineattacks)Defenses–ByzantineDefenseModelpoisoningattackcanbreakKrumandcoordinate-wisemedianAnalyzingfederatedlearningthroughanadversariallens,ICML2019.??/:adversarialtargetclassr:numberofpoisonedsamples??0:cleandata1???2:estimationoftheglobalparametersReversedgradientsfromthelastround.Defenses–SybilDefenseFromtraditionalML:RejectonNegativeInfluence(RONI)WithacleanvalidationdatasetItrequiresuniformdistributioninnon-IIDsetting,notgood.FoolsGold:Sybilsharethesameobjective,driftsawayfromtheoriginalobjectiveCoreidea:cosinesimilarity
Defenses–SybilDefenseDistributedbackdoorattack(DBA)canbypassbothRFAandFoolsGold.DBA:Distributed
Backdoor
Attacks
against
Federated
Learning,
ICLR
2020.
Defenses
-
SummaryDefenseagainstFederatedLearningPoisoning.n:numberofparticipants.RemainingChallengesandFutureResearch□ CurseofdimensionalityLargermodelsaremorevulnerableSharingweights/gradientsmaynotbeagoodidea□ WeaknessesofcurrentattacksGANattackassumestheclassofdataisfromonesingleparticipantDLG/iDLGworkwithsecond-ordergradientmethod(expensive)andsmallminibatch-gradients(B=8)□ Vulnerabilitytofreeriders:pretendtohavedatabutnot.□ WeaknessofCurrentPrivacy-preservingTechniquesSecureaggregationismorevulnerabletopoisoningattackssinceindividualupdatescannotbecheckedAdversarialtraining(IIDornon-IID,loca
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南崗小學(xué)期末數(shù)學(xué)試卷
- 人體寄生蟲概述課件線蟲
- 湖南岳陽數(shù)學(xué)試卷
- 六年行人下冊數(shù)學(xué)試卷
- 界首中考數(shù)學(xué)試卷
- 聊城初三上學(xué)期數(shù)學(xué)試卷
- 2025-2030中國機場特種車輛市場運營規(guī)模與經(jīng)營管理風(fēng)險分析報告
- 蒙山縣的期末數(shù)學(xué)試卷
- 來鳳中學(xué)高一數(shù)學(xué)試卷
- 柳州初二聯(lián)考數(shù)學(xué)試卷
- SX-22163-QR345工裝維護保養(yǎng)記錄
- 中國重癥加強治療病房建設(shè)與管理指南
- 2023年航空職業(yè)技能鑒定考試-候機樓服務(wù)技能考試題庫(含答案)
- MBA培訓(xùn)進修協(xié)議
- p型半導(dǎo)體和n型半導(dǎo)體課件
- LY/T 2501-2015野生動物及其產(chǎn)品的物種鑒定規(guī)范
- GB/T 748-2005抗硫酸鹽硅酸鹽水泥
- GB 15763.1-2001建筑用安全玻璃防火玻璃
- 民間文學(xué)(全套課件)
- 專升本00465心理衛(wèi)生與心理輔導(dǎo)歷年試題題庫(考試必備)
- 既有重載鐵路無縫線路改造及運維技術(shù)探索
評論
0/150
提交評論