安慶師范大學(xué)《機(jī)器學(xué)習(xí)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
安慶師范大學(xué)《機(jī)器學(xué)習(xí)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
安慶師范大學(xué)《機(jī)器學(xué)習(xí)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)安慶師范大學(xué)《機(jī)器學(xué)習(xí)應(yīng)用》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在一個(gè)股票價(jià)格預(yù)測(cè)的場(chǎng)景中,需要根據(jù)歷史的股票價(jià)格、成交量、公司財(cái)務(wù)指標(biāo)等數(shù)據(jù)來預(yù)測(cè)未來的價(jià)格走勢(shì)。數(shù)據(jù)具有非線性、非平穩(wěn)和高噪聲的特點(diǎn)。以下哪種方法可能是最合適的?()A.傳統(tǒng)的線性回歸方法,簡(jiǎn)單直觀,但無法處理非線性關(guān)系B.支持向量回歸(SVR),對(duì)非線性數(shù)據(jù)有一定處理能力,但對(duì)高噪聲數(shù)據(jù)可能效果不佳C.隨機(jī)森林回歸,能夠處理非線性和高噪聲數(shù)據(jù),但解釋性較差D.基于深度學(xué)習(xí)的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),對(duì)時(shí)間序列數(shù)據(jù)有較好的建模能力,但容易過擬合2、考慮一個(gè)回歸問題,我們要預(yù)測(cè)房?jī)r(jià)。數(shù)據(jù)集包含了房屋的面積、房間數(shù)量、地理位置等特征以及對(duì)應(yīng)的房?jī)r(jià)。在選擇評(píng)估指標(biāo)來衡量模型的性能時(shí),需要綜合考慮模型的準(zhǔn)確性和誤差的性質(zhì)。以下哪個(gè)評(píng)估指標(biāo)不僅考慮了預(yù)測(cè)值與真實(shí)值的偏差,還考慮了偏差的平方?()A.平均絕對(duì)誤差(MAE)B.均方誤差(MSE)C.決定系數(shù)(R2)D.準(zhǔn)確率(Accuracy)3、在深度學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加速訓(xùn)練B.防止過擬合C.提高模型泛化能力D.以上都是4、在一個(gè)分類問題中,如果類別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機(jī)B.決策樹C.樸素貝葉斯D.隨機(jī)森林5、假設(shè)要對(duì)一個(gè)時(shí)間序列數(shù)據(jù)進(jìn)行預(yù)測(cè),例如股票價(jià)格的走勢(shì)。數(shù)據(jù)具有明顯的趨勢(shì)和季節(jié)性特征。以下哪種時(shí)間序列預(yù)測(cè)方法可能較為合適?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.以上方法都可能適用,取決于具體數(shù)據(jù)特點(diǎn)6、在自然語(yǔ)言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是7、在處理文本分類任務(wù)時(shí),除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)模型也表現(xiàn)出色。假設(shè)我們要對(duì)新聞文章進(jìn)行分類。以下關(guān)于文本分類模型的描述,哪一項(xiàng)是不正確的?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體如長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)和門控循環(huán)單元(GRU)能夠處理文本的序列信息B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)也可以應(yīng)用于文本分類,通過卷積操作提取文本的局部特征C.Transformer架構(gòu)在處理長(zhǎng)文本時(shí)性能優(yōu)于RNN和CNN,但其計(jì)算復(fù)雜度較高D.深度學(xué)習(xí)模型在文本分類任務(wù)中總是比傳統(tǒng)機(jī)器學(xué)習(xí)算法(如樸素貝葉斯、支持向量機(jī))效果好8、當(dāng)使用樸素貝葉斯算法進(jìn)行分類時(shí),假設(shè)特征之間相互獨(dú)立。但在實(shí)際數(shù)據(jù)中,如果特征之間存在一定的相關(guān)性,這會(huì)對(duì)算法的性能產(chǎn)生怎樣的影響()A.提高分類準(zhǔn)確性B.降低分類準(zhǔn)確性C.對(duì)性能沒有影響D.可能提高也可能降低準(zhǔn)確性,取決于數(shù)據(jù)9、在機(jī)器學(xué)習(xí)中,數(shù)據(jù)預(yù)處理是非常重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯(cuò)誤的是:數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)歸一化、數(shù)據(jù)標(biāo)準(zhǔn)化等步驟。目的是提高數(shù)據(jù)的質(zhì)量和可用性。那么,下列關(guān)于數(shù)據(jù)預(yù)處理的說法錯(cuò)誤的是()A.數(shù)據(jù)清洗可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)歸一化將數(shù)據(jù)映射到[0,1]區(qū)間,便于不同特征之間的比較C.數(shù)據(jù)標(biāo)準(zhǔn)化將數(shù)據(jù)的均值和標(biāo)準(zhǔn)差調(diào)整為特定的值D.數(shù)據(jù)預(yù)處理對(duì)模型的性能影響不大,可以忽略10、在進(jìn)行自動(dòng)特征工程時(shí),以下關(guān)于自動(dòng)特征工程方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)可以從原始數(shù)據(jù)中自動(dòng)提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動(dòng)特征工程可以完全替代人工特征工程,不需要人工干預(yù)D.自動(dòng)特征工程需要大量的計(jì)算資源和時(shí)間,但可以提高特征工程的效率11、考慮一個(gè)圖像分割任務(wù),即將圖像分割成不同的區(qū)域或?qū)ο蟆R韵履姆N方法常用于圖像分割?()A.閾值分割B.區(qū)域生長(zhǎng)C.邊緣檢測(cè)D.以上都是12、在一個(gè)強(qiáng)化學(xué)習(xí)問題中,智能體需要在環(huán)境中通過不斷嘗試和學(xué)習(xí)來優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動(dòng)作空間,以下哪種算法通常被用于解決這類問題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法13、在一個(gè)多標(biāo)簽分類問題中,每個(gè)樣本可能同時(shí)屬于多個(gè)類別。例如,一篇文章可能同時(shí)涉及科技、娛樂和體育等多個(gè)主題。以下哪種方法可以有效地處理多標(biāo)簽分類任務(wù)?()A.將多標(biāo)簽問題轉(zhuǎn)化為多個(gè)二分類問題,分別進(jìn)行預(yù)測(cè)B.使用一個(gè)單一的分類器,輸出多個(gè)概率值表示屬于各個(gè)類別的可能性C.對(duì)每個(gè)標(biāo)簽分別訓(xùn)練一個(gè)獨(dú)立的分類器D.以上方法都不可行,多標(biāo)簽分類問題無法通過機(jī)器學(xué)習(xí)解決14、在使用樸素貝葉斯算法進(jìn)行分類時(shí),以下關(guān)于樸素貝葉斯的假設(shè)和特點(diǎn),哪一項(xiàng)是不正確的?()A.假設(shè)特征之間相互獨(dú)立,簡(jiǎn)化了概率計(jì)算B.對(duì)于連續(xù)型特征,通常需要先進(jìn)行離散化處理C.樸素貝葉斯算法對(duì)輸入數(shù)據(jù)的分布沒有要求,適用于各種類型的數(shù)據(jù)D.樸素貝葉斯算法在處理高維度數(shù)據(jù)時(shí)性能較差,容易出現(xiàn)過擬合15、假設(shè)我們正在訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)模型,發(fā)現(xiàn)模型在訓(xùn)練集上表現(xiàn)很好,但在測(cè)試集上表現(xiàn)不佳。這可能是由于以下哪種原因()A.訓(xùn)練數(shù)據(jù)量不足B.模型過于復(fù)雜,導(dǎo)致過擬合C.學(xué)習(xí)率設(shè)置過高D.以上原因都有可能二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)談?wù)勗趫D像識(shí)別中,常用的機(jī)器學(xué)習(xí)技術(shù)有哪些?2、(本題5分)說明機(jī)器學(xué)習(xí)在急診醫(yī)學(xué)中的快速診斷。3、(本題5分)簡(jiǎn)述聚類算法中K-Means的基本流程。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)分析機(jī)器學(xué)習(xí)算法中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)的不同架構(gòu)。介紹常見的CNN架構(gòu),如LeNet、AlexNet、VGGNet等,分析其特點(diǎn)和應(yīng)用場(chǎng)景。2、(本題5分)探討機(jī)器學(xué)習(xí)在城市交通出行規(guī)劃中的應(yīng)用,如公交線路優(yōu)化、共享單車調(diào)度等,分析其對(duì)城市交通效率的提升。3、(本題5分)機(jī)器學(xué)習(xí)中的模型壓縮技術(shù)對(duì)性能有何影響?結(jié)合實(shí)際應(yīng)用,分析其在減少計(jì)算資源需求方面的作用。4、(本題5分)分析機(jī)器學(xué)習(xí)在天文學(xué)中的恒星分類中的應(yīng)用,討論其對(duì)天文學(xué)研究的貢獻(xiàn)。5、(本題5分)論述機(jī)器學(xué)習(xí)在保險(xiǎn)欺詐檢測(cè)中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論