2024屆上海市徐匯區(qū)上海第四中學(xué)高三第二次質(zhì)量測(cè)試(5月)數(shù)學(xué)試題試卷_第1頁(yè)
2024屆上海市徐匯區(qū)上海第四中學(xué)高三第二次質(zhì)量測(cè)試(5月)數(shù)學(xué)試題試卷_第2頁(yè)
2024屆上海市徐匯區(qū)上海第四中學(xué)高三第二次質(zhì)量測(cè)試(5月)數(shù)學(xué)試題試卷_第3頁(yè)
2024屆上海市徐匯區(qū)上海第四中學(xué)高三第二次質(zhì)量測(cè)試(5月)數(shù)學(xué)試題試卷_第4頁(yè)
2024屆上海市徐匯區(qū)上海第四中學(xué)高三第二次質(zhì)量測(cè)試(5月)數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023屆上海市徐匯區(qū)上海第四中學(xué)高三第二次質(zhì)量測(cè)試(5月)數(shù)學(xué)試題試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)是拋物線的對(duì)稱(chēng)軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上且滿(mǎn)足,若取得最大值時(shí),點(diǎn)恰好在以為焦點(diǎn)的橢圓上,則橢圓的離心率為()A. B. C. D.2.已知展開(kāi)式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-813.世紀(jì)產(chǎn)生了著名的“”猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到.如圖是驗(yàn)證“”猜想的一個(gè)程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.4.如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點(diǎn),且,,則異面直線與所成角的余弦值為()A. B. C. D.5.如圖,設(shè)為內(nèi)一點(diǎn),且,則與的面積之比為A. B.C. D.6.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.7.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬(wàn)物的絢麗畫(huà)面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱(chēng)美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過(guò)5個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到坐標(biāo)原點(diǎn)O的距離都不超過(guò)2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號(hào)是()A.①③ B.②④ C.①②③ D.②③④8.若函數(shù)(其中,圖象的一個(gè)對(duì)稱(chēng)中心為,,其相鄰一條對(duì)稱(chēng)軸方程為,該對(duì)稱(chēng)軸處所對(duì)應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度9.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.10.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.11.已知定義在上的奇函數(shù)和偶函數(shù)滿(mǎn)足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.12.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開(kāi)式中項(xiàng)的系數(shù)是__________14.五聲音階是中國(guó)古樂(lè)基本音階,故有成語(yǔ)“五音不全”.中國(guó)古樂(lè)中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個(gè)音階全用上,排成一個(gè)五個(gè)音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.15.已知圓柱的上下底面的中心分別為,過(guò)直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為_(kāi)___16.在中,內(nèi)角所對(duì)的邊分別是.若,,則__,面積的最大值為_(kāi)__.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點(diǎn),為棱上一點(diǎn),若平面.(1)求線段的長(zhǎng);(2)求二面角的余弦值.18.(12分)為響應(yīng)“堅(jiān)定文化自信,建設(shè)文化強(qiáng)國(guó)”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺(tái)計(jì)劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機(jī)抽取了120名學(xué)生做調(diào)查,統(tǒng)計(jì)結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是5:3.(1)填寫(xiě)下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系?男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)不喜歡閱讀中國(guó)古典文學(xué)總計(jì)(2)為做好文化建設(shè)引領(lǐng),實(shí)驗(yàn)組把該校作為試點(diǎn),和該校的學(xué)生進(jìn)行中國(guó)古典文學(xué)閱讀交流.實(shí)驗(yàn)人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個(gè)代表中有2名男生代表和2名女生代表喜歡中國(guó)古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會(huì),記為參加會(huì)議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.19.(12分)手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷(xiāo)海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷(xiāo)合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級(jí)的概率;(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷(xiāo),且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷(xiāo),利潤(rùn)記為100元.①求10件手工藝品中不能外銷(xiāo)的手工藝品最有可能是多少件;②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.20.(12分)在中,角所對(duì)的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.21.(12分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線的上方,求實(shí)數(shù)的取值范圍22.(10分)已知函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)的圖象與兩坐標(biāo)軸的交點(diǎn)分別為,若三角形的面積大于,求參數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

設(shè),利用兩點(diǎn)間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時(shí)的點(diǎn)坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因?yàn)槭菕佄锞€的對(duì)稱(chēng)軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),所以,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí),,點(diǎn)在以為焦點(diǎn)的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點(diǎn)睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來(lái)求解.2.B【解析】

根據(jù)二項(xiàng)式系數(shù)的性質(zhì),可求得,再通過(guò)賦值求得以及結(jié)果即可.【詳解】因?yàn)檎归_(kāi)式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,故可得,令,故可得,又因?yàn)?,令,則,解得令,則.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),以及通過(guò)賦值法求系數(shù)之和,屬綜合基礎(chǔ)題.3.C【解析】

列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.4.B【解析】

建立空間直角坐標(biāo)系,利用向量法計(jì)算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設(shè)的中點(diǎn)為,建立空間直角坐標(biāo)系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點(diǎn)睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.5.A【解析】

作交于點(diǎn),根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點(diǎn),則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點(diǎn)睛】本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎(chǔ)題,作出合適的輔助線是本題的關(guān)鍵.6.B【解析】

由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對(duì)值不等式求得結(jié)果.【詳解】由題意知:定義域?yàn)?,,為偶函?shù),當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問(wèn)題;奇偶性的作用是能夠確定對(duì)稱(chēng)區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進(jìn)而化簡(jiǎn)不等式.7.B【解析】

利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點(diǎn),,,,則①和③都錯(cuò)誤;由,得④正確.故選:B.【點(diǎn)睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.8.B【解析】

由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過(guò)點(diǎn),,可得,,解得:.再根據(jù)五點(diǎn)法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個(gè)單位長(zhǎng)度,可得的圖象,故選B.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.9.D【解析】

確定點(diǎn)為外心,代入化簡(jiǎn)得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)?,②?lián)立方程①②可得,,,因?yàn)?,所以,即.故選:【點(diǎn)睛】本題考查了向量模長(zhǎng)的計(jì)算,意在考查學(xué)生的計(jì)算能力.10.D【解析】

根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.11.D【解析】

根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因?yàn)椋?,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點(diǎn)睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.12.C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時(shí)雙曲線,則曲線的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.-20【解析】

根據(jù)二項(xiàng)式定理的通項(xiàng)公式,再分情況考慮即可求解.【詳解】解:展開(kāi)式中項(xiàng)的系數(shù):二項(xiàng)式由通項(xiàng)公式當(dāng)時(shí),項(xiàng)的系數(shù)是,當(dāng)時(shí),項(xiàng)的系數(shù)是,故的系數(shù)為;故答案為:【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意分情況考慮,屬于基礎(chǔ)題.14.1【解析】

按照“角”的位置分類(lèi),分“角”在兩端,在中間,以及在第二個(gè)或第四個(gè)位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時(shí)有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個(gè)或第四個(gè)位置上,則有種;綜上,共有種.故答案為:1.【點(diǎn)睛】本題主要考查利用排列知識(shí)解決實(shí)際問(wèn)題,涉及分步計(jì)數(shù)乘法原理和分類(lèi)計(jì)數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類(lèi)討論思想的應(yīng)用和綜合運(yùn)用知識(shí)的能力,屬于基礎(chǔ)題.15.【解析】

由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因?yàn)檩S截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點(diǎn)睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.16.1【解析】

由正弦定理,結(jié)合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因?yàn)?,所以由正弦定理可得,所?所以,當(dāng),即時(shí),三角形面積最大.故答案為(1).1(2).【點(diǎn)睛】本題主要考查解三角形的問(wèn)題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎(chǔ)題型.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】

(1)先證得,設(shè)與交于點(diǎn),在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)由題意,,設(shè)與交于點(diǎn),在中,可求得,則,可求得,則(2)以為原點(diǎn),方向?yàn)檩S,方向?yàn)檩S,方向?yàn)檩S,建立空間直角坐標(biāo)系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設(shè)二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點(diǎn)睛】本小題主要考查根據(jù)線面垂直求邊長(zhǎng),考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1)見(jiàn)解析,沒(méi)有(2)見(jiàn)解析,【解析】

(1)根據(jù)題目所給數(shù)據(jù)填寫(xiě)列聯(lián)表,計(jì)算出的值,由此判斷出沒(méi)有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計(jì)算公式,計(jì)算出分布列并求得數(shù)學(xué)期望.【詳解】(1)男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)423072不喜歡閱讀中國(guó)古典文學(xué)301848總計(jì)7248120所以,沒(méi)有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系.(2)設(shè)參加座談會(huì)的男生中喜歡中國(guó)古典文學(xué)的人數(shù)為,女生中喜歡古典文學(xué)的人數(shù)為,則.且;;.所以的分布列為則.【點(diǎn)睛】本小題主要考查列聯(lián)表獨(dú)立性檢驗(yàn),考查隨機(jī)變量分布列和數(shù)學(xué)期望的求法,考查數(shù)據(jù)處理能力,屬于中檔題.19.(1);(2)①可能是2件;②詳見(jiàn)解析【解析】

(1)由一件手工藝品質(zhì)量為B級(jí)的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可;(2)①先求得一件手工藝品質(zhì)量為D級(jí)的概率為,設(shè)10件手工藝品中不能外銷(xiāo)的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷(xiāo)的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級(jí)的概率,進(jìn)而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級(jí)的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級(jí)的概率為,設(shè)10件手工藝品中不能外銷(xiāo)的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當(dāng)時(shí),,即,由得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中不能外銷(xiāo)的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級(jí)的概率為,一件手工藝品質(zhì)量為B級(jí)的概率為,一件手工藝品質(zhì)量為C級(jí)的概率為,一件手工藝品質(zhì)量為D級(jí)的概率為,所以X的分布列為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論