




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林一中2025屆高考數(shù)學四模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,直線BF交直線AC于M,且M為AC的中點,則橢圓E的離心率是()A. B. C. D.2.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.3.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β4.函數(shù)的部分圖象如圖所示,則的單調遞增區(qū)間為()A. B.C. D.5.已知函數(shù),若,則的取值范圍是()A. B. C. D.6.是定義在上的增函數(shù),且滿足:的導函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,當輸出的時,則輸入的的值為()A.-2 B.-1 C. D.8.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.9.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.在復平面內,復數(shù)(為虛數(shù)單位)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學家畢達哥拉斯公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.12.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.14.如圖,在菱形ABCD中,AB=3,,E,F(xiàn)分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)15.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.16.已知拋物線的焦點為,過點且斜率為1的直線交拋物線于兩點,,若線段的垂直平分線與軸交點的橫坐標為,則的值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內原有一個以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎上,將其改建成一個凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設為.(上述圖形均視作在同一平面內)(1)記四邊形的周長為,求的表達式;(2)要使改建成的展示區(qū)的面積最大,求的值.18.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.19.(12分)某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費.(I)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數(shù)解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學期望.20.(12分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)求直線l的普通方程和圓C的直角坐標方程;(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA|?|PB|的值.21.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.22.(10分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
連接,為的中位線,從而,且,進而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,不妨設B在第二象限,直線BF交直線AC于M,且M為AC的中點為的中位線,,且,,解得橢圓的離心率.故選:C【點睛】本題考查了橢圓的幾何性質,考查了運算求解能力,屬于基礎題.2、C【解析】
先畫出函數(shù)圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數(shù),利用導數(shù)求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉化思想和運算能力,屬于難題.3、B【解析】
根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據(jù)面面垂直的判定定理,判斷C選項的正確性.根據(jù)面面平行的性質判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.4、D【解析】
由圖象可以求出周期,得到,根據(jù)圖象過點可求,根據(jù)正弦型函數(shù)的性質求出單調增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過點,所以,故可取,所以令,解得所以函數(shù)的單調遞增區(qū)間為故選:.【點睛】本題主要考查了三角函數(shù)的圖象與性質,利用“五點法”求函數(shù)解析式,屬于中檔題.5、B【解析】
對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點睛】本題考查利用分段函數(shù)性質解不等式,屬于基礎題.6、D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構建新函數(shù),利用導數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導數(shù)在函數(shù)單調性中的應用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設中給出的原函數(shù)與導數(shù)的關系構建新函數(shù),本題屬于中檔題.7、B【解析】若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;綜上選B.8、C【解析】
由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內切球與外接球問題,由三視圖求幾何體的表面積,考查了學生的空間想象能力,屬于基礎題.9、D【解析】
根據(jù)面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.10、D【解析】
將復數(shù)化簡得,,即可得到對應的點為,即可得出結果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數(shù)的四則運算,考查共軛復數(shù)和復數(shù)與平面內點的對應,難度容易.11、C【解析】
先求出五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個數(shù),∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數(shù)的應用.12、B【解析】
求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.14、【解析】
根據(jù)題意,設,則,所以,解得,所以,從而有.15、【解析】
用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y果數(shù),再計算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點睛】本題考查隨機事件的概率,是基礎題.16、1【解析】
設,寫出直線方程代入拋物線方程后應用韋達定理求得,由拋物線定義得焦點弦長,求得,再寫出的垂直平分線方程,得,從而可得結論.【詳解】拋物線的焦點坐標為,直線的方程為,據(jù)得.設,則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點睛】本題考查拋物線的焦點弦問題,根據(jù)拋物線的定義表示出焦點弦長是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),.(2)【解析】
(1)由余弦定理的,然后根據(jù)直線與圓相切的性質求出,從而求出;(2)求得的表達式,通過求導研究函數(shù)的單調性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因為與半圓相切于,所以,所以,所以.所以四邊形的周長為,.(2)設四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為.【點睛】本題考查余弦定理、直線與圓的位置關系、導數(shù)與函數(shù)最值的關系,考查考生的邏輯思維能力,運算求解能力,以及函數(shù)與方程的思想.18、,;當時,棧道總長度最短.【解析】
連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據(jù)求導得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優(yōu)弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調遞減極小值單調遞增故時,所以當時,棧道總長度最短.【點睛】本題主要考查導數(shù)在函數(shù)當中的應用,屬于中檔題.19、(1);(2),;(3)見解析.【解析】試題分析:(1)根據(jù)題意分段表示出函數(shù)解析式;(2)將代入(1)中函數(shù)解析式可得,即,根據(jù)頻率分布直方圖可分別得到關于的方程,即可得;(3)取每段中點值作為代表的用電量,分別算出對應的費用值,對應得出每組電費的概率,即可得到的概率分布列,然后求出的期望.試題解析:(1)當時,;當當時,;當當時,,所以與之間的函數(shù)解析式為.(2)由(1)可知,當時,,則,結合頻率分布直方圖可知,∴,(3)由題意可知可取50,150,250,350,450,550,當時,,∴,當時,,∴,當時,,∴,當時,,∴,當時,,∴,當時,,∴,故的概率分布列為25751402203104100.10.20.30.20.150.05所以隨機變量的數(shù)學期望20、(1)直線的普通方程,圓的直角坐標方程:.(2)【解析】
(1)直接利用轉換關系的應用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉換.(2)將直線的參數(shù)方程代入圓的直角坐標方程,利用一元二次方程根和系數(shù)關系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉換為直角坐標方程為x+y﹣3=0.圓C的極坐標方程為ρ2﹣4ρcosθ=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 黃岡中學廣州學校高二下學期六月考歷史試卷
- 心靈雞湯 讀后續(xù)寫11 Sampo Girl 導學案-高三英語一輪復習
- 小學三年級數(shù)學下冊應用題專項練習題(每日一練共10份)
- 小數(shù)的初步認識-蘇教版三升四數(shù)學暑假專項提升講義(含解析)
- 2025年光伏電廠考真題及答案
- 醫(yī)藥制造業(yè)的技術轉移與合作模式考核試卷
- 閱讀理解(含答案解析)-2025年新九年級(八升九)英語暑假專項提升
- 植物基調味品考核試卷
- 合成材料在食品包裝領域的應用考核試卷
- 一元一次方程(原卷版)-2024年七年級數(shù)學寒假提升學與練(北師大版)
- 《急性HIV感染診療管理專家共識(2025版)》解讀
- 如何高中數(shù)學備課
- 涉案資金退還協(xié)議書
- 《神經影像解析》課件
- 電力建設水電工程智慧工地技術規(guī)范
- 2025年四川省成都市錦江區(qū)中考數(shù)學二診試卷(含部分答案)
- 食源性疾病防治知識
- 向上溝通培訓課件
- 《頸椎病損的康復治療》課件
- 酒店微笑培訓
- 電商平臺服務協(xié)議交易規(guī)則微信小程序申請模板
評論
0/150
提交評論