




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河南省駐馬店經(jīng)濟開發(fā)區(qū)高級中學2025屆高三第五次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數(shù)之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.2.設等比數(shù)列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要3.已知中,,則()A.1 B. C. D.4.已知平面向量滿足與的夾角為,且,則實數(shù)的值為()A. B. C. D.5.已知且,函數(shù),若,則()A.2 B. C. D.6.已知角的終邊經(jīng)過點,則的值是A.1或 B.或 C.1或 D.或7.已知是等差數(shù)列的前項和,若,設,則數(shù)列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.20178.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.9.設函數(shù)定義域為全體實數(shù),令.有以下6個論斷:①是奇函數(shù)時,是奇函數(shù);②是偶函數(shù)時,是奇函數(shù);③是偶函數(shù)時,是偶函數(shù);④是奇函數(shù)時,是偶函數(shù)⑤是偶函數(shù);⑥對任意的實數(shù),.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤10.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或11.定義在上的偶函數(shù),對,,且,有成立,已知,,,則,,的大小關系為()A. B. C. D.12.已知函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若滿足,且方向相同,則__________.14.在中,,,,則繞所在直線旋轉(zhuǎn)一周所形成的幾何體的表面積為______________.15.在平面直角坐標系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.16.數(shù)列滿足遞推公式,且,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其導函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.18.(12分)在平面直角坐標系中,點,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.19.(12分)如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.(1)求橢圓的標準方程;(2)設、是橢圓上位于直線同側的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.20.(12分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為真命題且為假命題,求實數(shù)的取值范圍.21.(12分)如圖,在直三棱柱中,,,為的中點,點在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.22.(10分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以為極點,軸正半軸為極軸的極坐標中,曲線:.(1)當時,求與的交點的極坐標;(2)直線與曲線交于,兩點,線段中點為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應概率.【詳解】因為陽數(shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.2、A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因為恒成立,故可以推出且,若成立,當時,有,當時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關系,屬于基礎題.3、C【解析】
以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.4、D【解析】
由已知可得,結合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數(shù)量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.5、C【解析】
根據(jù)分段函數(shù)的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應用,由分段函數(shù)解析式求自變量.6、B【解析】
根據(jù)三角函數(shù)的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.7、B【解析】
根據(jù)題意計算,,,計算,,,得到答案.【詳解】是等差數(shù)列的前項和,若,故,,,,故,當時,,,,,當時,,故前項和最大.故選:.【點睛】本題考查了數(shù)列和的最值問題,意在考查學生對于數(shù)列公式方法的綜合應用.8、D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.9、A【解析】
根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當是偶函數(shù),則,所以,所以是偶函數(shù);當是奇函數(shù)時,則,所以,所以是偶函數(shù);當為非奇非偶函數(shù)時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A【點睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關鍵,屬于基礎題.10、A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.11、A【解析】
根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對,,且,有在上遞增因為定義在上的偶函數(shù)所以在上遞減又因為,,所以故選:A【點睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應用,基礎題.12、A【解析】
首先求得平移后的函數(shù),再根據(jù)求的最小值.【詳解】根據(jù)題意,的圖象向左平移個單位后,所得圖象對應的函數(shù),所以,所以.又,所以的最小值為.故選:A【點睛】本題考查三角函數(shù)的圖象變換,誘導公式,意在考查平移變換,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由向量平行坐標表示計算.注意驗證兩向量方向是否相同.【詳解】∵,∴,解得或,時,滿足題意,時,,方向相反,不合題意,舍去.∴.故答案為:1.【點睛】本題考查向量平行的坐標運算,解題時要注意驗證方向相同這個條件,否則會出錯.14、【解析】
由題知該旋轉(zhuǎn)體為兩個倒立的圓錐底對底組合在一起,根據(jù)圓錐側面積計算公式可得.【詳解】解:由題知該旋轉(zhuǎn)體為兩個倒立的圓錐底對底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【點睛】本題考查旋轉(zhuǎn)體的表面積計算問題,屬于基礎題.15、【解析】
設圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉(zhuǎn)化成兩個新圓有公共點求參數(shù)范圍.【詳解】設圓C1上存在點P(x0,y0)滿足題意,點P關于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:【點睛】此題考查圓與圓的位置關系,其中涉及點關于直線對稱點問題,兩個圓有公共點的判定方式.16、2020【解析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數(shù)列遞推式和累加法的應用,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)求出的導數(shù),根據(jù)導函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構造函數(shù),利用導數(shù)判斷在區(qū)間上單調(diào)遞減,結合可得結果.【詳解】(1)若,則.設,則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當時,;當時,;當時,,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設,再令,,在上單調(diào)遞減,又,,,,,.即【點睛】本題考查利用函數(shù)的導數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.18、(1);(2).【解析】
(1)在已知極坐標方程兩邊同時乘以ρ后,利用ρcosθ=x,ρsinθ=y(tǒng),ρ2=x2+y2可得曲線C的直角坐標方程;(2)聯(lián)立直線l的參數(shù)方程與x2=4y由韋達定理以及參數(shù)的幾何意義和弦長公式可得弦長與已知弦長相等可解得.【詳解】解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲線C的直角坐標方程為:x2=4y.(2)聯(lián)立直線l的參數(shù)方程與x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,設A,B兩點對應的參數(shù)分別為t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【點睛】本題考查了簡單曲線的極坐標方程,屬中檔題.19、(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后利用條件,結合橢圓的對稱性得到點的坐標,然后將點的坐標代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件得到直線與的斜率直線的關系(互為相反數(shù)),然后設直線的方程為,將此直線的方程與橢圓方程聯(lián)立,求出點的坐標,注意到直線與的斜率之間的關系得到點的坐標,最后再用斜率公式證明直線的斜率為定值.(1),,又是等腰三角形,所以,把點代入橢圓方程,求得,所以橢圓方程為;(2)由題易得直線、斜率均存在,又,所以,設直線代入橢圓方程,化簡得,其一解為,另一解為,可求,用代入得,,為定值.考點:1.橢圓的方程;2.直線與橢圓的位置關系;3.兩點間連線的斜率20、(1)(2)或【解析】
(1)根據(jù)為真命題列出不等式,進而求得實數(shù)的取值范圍;(2)應用復合命題真假判定的口訣:真“非”假,假“非”真,一真“或”為真,兩真“且”才真.【詳解】(1),且,解得所以當為真命題時,實數(shù)的取值范圍是.(2)由,可得,又∵當時,,.∵當為真命題,且為假命題時,∴與的真假性相同,當假假時,有,解得;當真真時,有,解得;故當為真命題且為假命題時,可得或.【點睛】本題主要考查結合不等式的含有量詞的命題的恒成立問題,存在性問題,考查復合命題的真假判斷,意在考查學生對這些知識的掌握水平和分析推理能力.21、見解析【解析】
(1)如圖,連接,交于點,連接,,則為的中點,因為為的中點,所以,又,所以,從而,,,四點共面.因為平面,平面,平面平面,所以.又,所以四邊形為平行四邊形,所以,所以(2)因為,為的中點,所以,又三棱柱是直三棱柱,,所以,,互相垂直,分別以,,的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,因為,,所以,,,,所以,,.設平面的法向量為,則,即,令,可得,,所以平面的一個法向量為.設平面的法向量為,則,即,令,可得,,所以平面的一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加密技術在供應鏈數(shù)據(jù)泄露預防中的作用考核試卷
- 隧道施工沉降監(jiān)測數(shù)據(jù)處理技術考核試卷
- 供應鏈金融在化學礦品牌重塑中的作用機制研究考核試卷
- 選擇易錯100道-2023學年七年級英語下學期期末復習(牛津譯林版)
- 修辭手法(復習講義)-2026屆高考語文一輪復習解析版
- 英語-七年級-華益中學-期末考試試卷
- 吉林省長春市凈月高新區(qū)2024-2025學年七年級下學期期末考試數(shù)學試卷(含答案)
- 重科大油層物理試題及答案
- 廣東省河源市部分學校2025屆高三上學期開學考試地理試卷(含答案)
- 2025-2026學年山東省濰坊市昌樂二中高二(上)開學數(shù)學試卷含答案
- 銀行貸款政策課件
- 《智慧倉配運營》 課件全套 項目1-8 走進智慧倉配-智慧倉配規(guī)劃實施
- 2025年武漢市中考英語試卷真題(含答案)
- 2025版公司股東退股的協(xié)議
- DGTJ08-85-2020 地下管線測繪標準
- 端粒長度預測模型-洞察及研究
- 統(tǒng)編版七年級語文上冊 第18課《我的白鴿》 練習題(含答案)
- 2025年遼寧省中考數(shù)學試題卷(含答案解析)
- 2025新《治安管理處罰法》解讀
- 浙江省舟山市2024-2025學年高二下學期6月期末物理+答案
- 內(nèi)蒙古交通投資公司招聘筆試題庫2025
評論
0/150
提交評論