




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
4.寫解3.求解2.代入
分別求出兩個未知數(shù)的值寫出方程組的解1.變形用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù)1、解二元一次方程組的根本思路是什么?2、用代入法解方程組的主要步驟是什么?消去一個元溫故而知新基本思路:消元:二元一元等式的性質(zhì)<1>假設(shè)a=b,那么a±c=.1、根據(jù)等式性質(zhì)填空:b±c(等式性質(zhì)1)<2>假設(shè)a=b,那么ac=.思考:假設(shè)a=b,c=d,那么a+c=b+d嗎?bc(等式性質(zhì)2)解下面的二元一次方程組代入①,消去了!把②變形得:標準的代入消元法②①還有別的方法嗎?
認真觀察此方程組中各個未知數(shù)的系數(shù)有什么特點,并分組討論看還有沒有其它的解法.并嘗試一下能否求出它的解新思路新體驗①②和互為相反數(shù)……分析:
①②3x+5y+2x
-
5y=10①左邊+②左邊=①右邊+②右邊5x=10x=2〔3x+5y〕+〔2x-5y〕=21+(-11)等式性質(zhì)理解新知思考聯(lián)系上面的解法,想一想怎樣解方程組4x+5y=3①2x+5y=-1②②①①②①+②①-②一.填空題:分別相加yx+3y=172x-3y=6就可以消去未知數(shù)分別相減25x-7y=1625x+6y=10就可以消去未知數(shù)x1.方程組兩個方程只要
兩邊2.方程組兩個方程只要
兩邊感悟規(guī)律揭示本質(zhì)
兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程,這種方法叫做加減消元法,簡稱加減法.2x-5y=7
①2x+3y=-1
②
觀察方程組中的兩個方程,未知數(shù)x的系數(shù)相等,都是2。把兩個方程兩邊分別相減,就可以消去未知數(shù)x,同樣得到一個一元一次方程。分析:舉一反三解方程組2x-5y=7
①2x+3y=-1
②解:把②-①得:8y=-8y=-1把y=-1代入①,得:2x-5×〔-1〕=7解得:x=1所以原方程組的解是x=1y=-1舉一反三二:用加減法解二元一次方程組。⑴7x-2y=39x+2y=-19⑵6x-5y=36x+y=-15x=-1y=-5x=-2y=-3做一做2x+3y=12①3x+4y=17②運用新知拓展創(chuàng)新分析:1、要想用加減法解二元一次方程組必須具備什么條件?2、此方程組能否直接用加減法消元?
用加減法解方程組:解:①×3得6x+9y=36③所以原方程組的解是①②③-④得:y=2把y=2代入①,解得:x=3②×2得6x+8y=34④根本思路:主要步驟:加減消元:二元一元加減消去一個元求解分別求出兩個未知數(shù)的值加減消元法解方程組根本思路是什么?主要步驟有哪些?變形同一個未知數(shù)的系數(shù)相同或互為相反數(shù)寫解寫出方程組的解反響矯正鼓勵評價1、用加減法解以下方程組4s+3t=5
2s-t=-5s=-1t=35x-6y=9(2)
7x-4y=-5x=-3y=-4(1)
2、假設(shè)單項式與﹣3是同類項,求m、n的值。反響矯正鼓勵評價3、假設(shè)(3x+2y-5)2+|5x+3y-8|=0求x2+y-1的值。
加減消元法:兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程,這種方法叫做加減消元法,小結(jié):學習了本節(jié)課你有哪些收獲?加減消元法解方程組的主要步驟:加減消去一個元求解分別求出兩個未知數(shù)的值變形同一個未知數(shù)的系數(shù)相同或互為相反數(shù)寫解寫出方程組的解1.用加減消元法解方程組:解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年大學生戀愛常識及健康知識試題(附含答案)
- 2024年全民(生態(tài)日環(huán)境保護及相關(guān)規(guī)定)知識考試題庫與答案
- 現(xiàn)代漢語修辭學練習題庫及答案解析
- 2024年質(zhì)量月(全面質(zhì)量管理)安全生產(chǎn)知識考試題庫與答案
- 2025年全國電力安全工作規(guī)程考試題及參考答案
- 2024年高等教育自學考試管理經(jīng)濟學試題及答案
- 搖滾馬紳士游記課件
- 四川省成都市青白江區(qū)2024-2025學年八年級下學期期末語文試題(解析版)
- 攝影剪輯培訓課件
- 牛生產(chǎn)技術(shù)試題及答案
- 5.1 延續(xù)文化血脈 (導學案) 2024-2025學年統(tǒng)編版道德與法治九年級上冊
- 三甲醫(yī)院臨床試驗機構(gòu)-31 V00 專業(yè)組備案及考核SOP
- 電纜相關(guān)項目實施方案
- 山東畜產(chǎn)品質(zhì)量安全檢測(抽樣員)職業(yè)技能競賽理論考試題及答案
- (新版)區(qū)塊鏈應用操作員職業(yè)技能競賽理論考試題庫-下(多選、判斷題)
- 部編人教版九年級道德與法治上冊教材
- 短視頻創(chuàng)意內(nèi)容定制合同
- 關(guān)節(jié)松動技術(shù)-下肢關(guān)節(jié)松動術(shù)(運動治療技術(shù))
- 棋牌室入股合伙人協(xié)議書
- 《租船問題》教學設(shè)計及說課稿
- 兒童之家實施可行性方案
評論
0/150
提交評論