安徽省合肥市包河區(qū)重點中學2024年中考一模數(shù)學試題含解析_第1頁
安徽省合肥市包河區(qū)重點中學2024年中考一模數(shù)學試題含解析_第2頁
安徽省合肥市包河區(qū)重點中學2024年中考一模數(shù)學試題含解析_第3頁
安徽省合肥市包河區(qū)重點中學2024年中考一模數(shù)學試題含解析_第4頁
安徽省合肥市包河區(qū)重點中學2024年中考一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省合肥市包河區(qū)重點中學2024年中考一模數(shù)學試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在一個口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機地摸出一個小球然后放回,再隨機地摸出一個小球.則兩次摸出的小球的標號的和等于6的概率為()A. B. C. D.2.在﹣3,0,4,這四個數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.3.設(shè)x1,x2是方程x2-2x-1=0的兩個實數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或54.若一元二次方程x2﹣2kx+k2=0的一根為x=﹣1,則k的值為()A.﹣1 B.0 C.1或﹣1 D.2或05.花園甜瓜是樂陵的特色時令水果.甜瓜一上市,水果店的小李就用3000元購進了一批甜瓜,前兩天以高于進價40%的價格共賣出150kg,第三天她發(fā)現(xiàn)市場上甜瓜數(shù)量陡增,而自己的甜瓜賣相已不大好,于是果斷地將剩余甜瓜以低于進價20%的價格全部售出,前后一共獲利750元,則小李所進甜瓜的質(zhì)量為()kg.A.180 B.200 C.240 D.3006.在△ABC中,點D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=7.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設(shè)小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.8.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a﹣b+c=0那么我們稱這個方程為“美好”方程,如果一個一元二次方程既是“和諧”方程又是“美好”方程,則下列結(jié)論正確的是()A.方有兩個相等的實數(shù)根 B.方程有一根等于0C.方程兩根之和等于0 D.方程兩根之積等于09.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.10.如圖,點P是菱形ABCD邊上的一動點,它從點A出發(fā)沿在A→B→C→D路徑勻速運動到點D,設(shè)△PAD的面積為y,P點的運動時間為x,則y關(guān)于x的函數(shù)圖象大致為()A.B.C.D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在ABCD中,AB=8,P、Q為對角線AC的三等分點,延長DP交AB于點M,延長MQ交CD于點N,則CN=__________.12.計算:7+(-5)=______.13.在一次射擊訓練中,某位選手五次射擊的環(huán)數(shù)分別為5,8,7,6,1.則這位選手五次射擊環(huán)數(shù)的方差為.14.已知a2+1=3a,則代數(shù)式a+的值為.15.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機取出一個白球的概率是2316.若a是方程的解,計算:=______.17.如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,過D點作AB的垂線交AC于點E,BC=6,sinA=,則DE=_____.三、解答題(共7小題,滿分69分)18.(10分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.19.(5分)如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點坐標為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.20.(8分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.21.(10分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數(shù)解析式;求點C的坐標.22.(10分)如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.(1)求證:△AGE≌△BGF;(2)試判斷四邊形AFBE的形狀,并說明理由.23.(12分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數(shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?24.(14分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】列舉出所有情況,看兩次摸出的小球的標號的和等于6的情況數(shù)占總情況數(shù)的多少即可.解:共16種情況,和為6的情況數(shù)有3種,所以概率為.故選C.2、C【解析】試題分析:根據(jù)實數(shù)的大小比較法則,正數(shù)大于0,0大于負數(shù),兩個負數(shù)相比,絕對值大的反而?。虼?,在﹣3,0,1,這四個數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.3、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.4、A【解析】

把x=﹣1代入方程計算即可求出k的值.【詳解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故選:A.【點睛】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.5、B【解析】

根據(jù)題意去設(shè)所進烏梅的數(shù)量為,根據(jù)前后一共獲利元,列出方程,求出x值即可.【詳解】解:設(shè)小李所進甜瓜的數(shù)量為,根據(jù)題意得:,解得:,經(jīng)檢驗是原方程的解.答:小李所進甜瓜的數(shù)量為200kg.故選:B.【點睛】本題考查的是分式方程的應(yīng)用,解題關(guān)鍵在于對等量關(guān)系的理解,進而列出方程即可.6、D【解析】

根據(jù)平行線分線段成比例定理的逆定理,當或時,,然后可對各選項進行判斷.【詳解】解:當或時,,

即或.

所以D選項是正確的.【點睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例.也考查了平行線分線段成比例定理的逆定理.7、C【解析】

先分別表示出小進和小俊跑800米的時間,再根據(jù)小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【點睛】本題考查了列分式方程解應(yīng)用題,能找出題目中的相等關(guān)系式是解此題的關(guān)鍵.8、C【解析】試題分析:根據(jù)已知得出方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,再判斷即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,∴1+(﹣1)=0,即只有選項C正確;選項A、B、D都錯誤;故選C.9、A【解析】

應(yīng)明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因為在數(shù)軸上-3在其他數(shù)的左邊,所以-3最小;故選A.【點睛】此題考負數(shù)的大小比較,應(yīng)理解數(shù)字大的負數(shù)反而?。?0、B【解析】【分析】設(shè)菱形的高為h,即是一個定值,再分點P在AB上,在BC上和在CD上三種情況,利用三角形的面積公式列式求出相應(yīng)的函數(shù)關(guān)系式,然后選擇答案即可.【詳解】分三種情況:①當P在AB邊上時,如圖1,設(shè)菱形的高為h,y=12∵AP隨x的增大而增大,h不變,∴y隨x的增大而增大,故選項C不正確;②當P在邊BC上時,如圖2,y=12AD和h都不變,∴在這個過程中,y不變,故選項A不正確;③當P在邊CD上時,如圖3,y=12∵PD隨x的增大而減小,h不變,∴y隨x的增大而減小,∵P點從點A出發(fā)沿A→B→C→D路徑勻速運動到點D,∴P在三條線段上運動的時間相同,故選項D不正確,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,菱形的性質(zhì),根據(jù)點P的位置的不同,運用分類討論思想,分三段求出△PAD的面積的表達式是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據(jù)平行四邊形定義得:DC∥AB,由兩角對應(yīng)相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的長.【詳解】∵四邊形ABCD是平行四邊形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q為對角線AC的三等分點,∴,,設(shè)CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案為1.【點睛】本題考查了平行四邊形的性質(zhì)和相似三角形的判定和性質(zhì),熟練掌握兩角對應(yīng)相等,兩三角形相似的判定方法是關(guān)鍵.12、2【解析】

根據(jù)有理數(shù)的加法法則計算即可.【詳解】.故答案為:2.【點睛】本題考查有理數(shù)的加法計算,熟練掌握加法法則是關(guān)鍵.13、2.【解析】試題分析:五次射擊的平均成績?yōu)?(5+7+8+6+1)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.考點:方差.14、1【解析】

根據(jù)題意a2+1=1a,整體代入所求的式子即可求解.【詳解】∵a2+1=1a,∴a+=+===1.故答案為1.15、1.【解析】

先根據(jù)概率公式得到2+x5+x=2【詳解】根據(jù)題意得2+x5+x解得x=4.故答案為:4.【點睛】本題考查了概率公式:隨機事件A的概率PA=事件16、1【解析】

根據(jù)一元二次方程的解的定義得a2﹣3a+1=1,即a2﹣3a=﹣1,再代入,然后利用整體思想進行計算即可.【詳解】∵a是方程x2﹣3x+1=1的一根,∴a2﹣3a+1=1,即a2﹣3a=﹣1,a2+1=3a∴故答案為1.【點睛】本題考查了一元二次方程的解:使一元二次方程兩邊成立的未知數(shù)的值叫一元二次方程的解.也考查了整體思想的運用.17、【解析】

∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中點,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.三、解答題(共7小題,滿分69分)18、(1),(2)【解析】解:(1)畫樹狀圖得:∵總共有9種等可能情況,每人獲勝的情形都是3種,∴兩人獲勝的概率都是.(2)由(1)可知,一局游戲每人勝、負、和的機會均等,都為.任選其中一人的情形可畫樹狀圖得:∵總共有9種等可能情況,當出現(xiàn)(勝,勝)或(負,負)這兩種情形時,贏家產(chǎn)生,∴兩局游戲能確定贏家的概率為:.(1)根據(jù)題意畫出樹狀圖或列表,由圖表求得所有等可能的結(jié)果與在一局游戲中兩人獲勝的情況,利用概率公式即可求得答案.(2)因為由(1)可知,一局游戲每人勝、負、和的機會均等,都為.可畫樹狀圖,由樹狀圖求得所有等可能的結(jié)果與進行兩局游戲便能確定贏家的情況,然后利用概率公式求解即可求得答案.19、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點式,此題得解;(2)過點C作直線AB的垂線,交線段AB的延長線于點D,由AB∥x軸且AB=1,可得出點B的坐標為(m+2,1a+2m?2),設(shè)BD=t,則點C的坐標為(m+2+t,1a+2m?2?t),利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結(jié)論結(jié)合S△ABC=2可求出a值,分三種情況考慮:①當m>2m?2,即m<2時,x=2m?2時y取最大值,利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當2m?2≤m≤2m?2,即2≤m≤2時,x=m時y取最大值,利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于m的一元一次方程,解之可求出m的值;③當m<2m?2,即m>2時,x=2m?2時y取最大值,利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于m的一元一次方程,解之可求出m的值.綜上即可得出結(jié)論.詳解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴拋物線的頂點坐標為(m,2m﹣2),故答案為(m,2m﹣2);(2)過點C作直線AB的垂線,交線段AB的延長線于點D,如圖所示,∵AB∥x軸,且AB=1,∴點B的坐標為(m+2,1a+2m﹣2),∵∠ABC=132°,∴設(shè)BD=t,則CD=t,∴點C的坐標為(m+2+t,1a+2m﹣2﹣t),∵點C在拋物線y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB?CD=﹣;(3)∵△ABC的面積為2,∴﹣=2,解得:a=﹣,∴拋物線的解析式為y=﹣(x﹣m)2+2m﹣2.分三種情況考慮:①當m>2m﹣2,即m<2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②當2m﹣2≤m≤2m﹣2,即2≤m≤2時,有2m﹣2=2,解得:m=;③當m<2m﹣2,即m>2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m1=10+2.綜上所述:m的值為或10+2.點睛:本題考查了二次函數(shù)解析式的三種形式、二次函數(shù)圖象上點的坐標特征、等腰直角三角形、解一元二次方程以及二次函數(shù)的最值,解題的關(guān)鍵是:(1)利用配方法將二次函數(shù)解析式變形為頂點式;(2)利用等腰直角三角形的性質(zhì)找出點C的坐標;(3)分m<2、2≤m≤2及m>2三種情況考慮.20、(1)證明見解析(2)7/24(3)25/6【解析】(1)證明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。在△ABG≌△C′DG中,∵∠BAG=∠C,AB=C′D,∠ABG=∠ADC′,∴△ABG≌△C′DG(ASA)。(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。設(shè)AG=x,則GB=1﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。∴。(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD?!郒D=AD=4?!遲an∠ABG=tan∠ADE=?!郋H=HD×=4×?!逧F垂直平分AD,AB⊥AD,∴HF是△ABD的中位線。∴HF=AB=×6=3?!郋F=EH+HF=。(1)根據(jù)翻折變換的性質(zhì)可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出結(jié)論。(2)由(1)可知GD=GB,故AG+GB=AD,設(shè)AG=x,則GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的長,從而得出tan∠ABG的值。(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根據(jù)tan∠ABG的值即可得出EH的長,同理可得HF是△ABD的中位線,故可得出HF的長,由EF=EH+HF即可得出結(jié)果。21、(1)反比例函數(shù)解析式為y=;(2)C點坐標為(2,1)【解析】

(1)由S△BOD=1可得BD的長,從而可得D的坐標,然后代入反比例函數(shù)解析式可求得k,從而得解析式為y=;(2)由已知可確定A點坐標,再由待定系數(shù)法求出直線AB的解析式為y=2x,然后解方程組即可得到C點坐標.【詳解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)將D(1,2)代入y=,得2=,∴k=8,∴反比例函數(shù)解析式為y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A點坐標為(1,8),設(shè)直線OA的解析式為y=kx,把A(1,8)代入得1k=8,解得k=2,∴直線AB的解析式為y=2x,解方程組得或,∴C點坐標為(2,1).22、(1)證明見解析(2)四邊形AFBE是菱形【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AD∥BC,得出∠AEG=∠BFG,由AAS證明△AGE≌△BGF即可;(2)由全等三角形的性質(zhì)得出AE=BF,由AD∥BC,證出四邊形AFBE是平行四邊形,再根據(jù)EF⊥AB,即可得出結(jié)論.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四邊形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論