




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省泰安四中高三第六次模擬考試新高考數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則,則()A. B. C. D.2.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.3.一個組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.4.函數(shù)在的圖象大致為A. B.C. D.5.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.6.設函數(shù),則函數(shù)的圖像可能為()A. B. C. D.7.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.8.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.9.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.10.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.511.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.12.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若復數(shù)滿足,其中是虛數(shù)單位,是的共軛復數(shù),則________.14.已知數(shù)列滿足,則________.15.已知雙曲線的一條漸近線方程為,則________.16.已知實數(shù),滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.18.(12分)誠信是立身之本,道德之基,我校學生會創(chuàng)設了“誠信水站”,既便于學生用水,又推進誠信教育,并用“”表示每周“水站誠信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個周期)的誠信數(shù)據(jù)統(tǒng)計:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計算表中十二周“水站誠信度”的平均數(shù);(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機抽取兩周進行調研,計算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據(jù)已有數(shù)據(jù),說明兩次主題教育活動的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.19.(12分)已知函數(shù).(1)討論函數(shù)單調性;(2)當時,求證:.20.(12分)設為實數(shù),已知函數(shù),.(1)當時,求函數(shù)的單調區(qū)間:(2)設為實數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個相異的零點,求的取值范圍.21.(12分)設為等差數(shù)列的前項和,且,.(1)求數(shù)列的通項公式;(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.22.(10分)已知,.(1)當時,證明:;(2)設直線是函數(shù)在點處的切線,若直線也與相切,求正整數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.2、C【解析】
由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復幾何體是解題的關鍵.3、C【解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結構是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結構求出其體積.4、A【解析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.5、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.6、B【解析】
根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調性,奇偶性,特殊值排除選項是常用的技巧.7、D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質,即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當時,,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質的應用,其中解答中熟記三角函數(shù)的圖象變換,合理應用三角函數(shù)的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.9、C【解析】
根據(jù)的零點和最值點列方程組,求得的表達式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數(shù)對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質,考查化歸與轉化的數(shù)學思想方法,考查分類討論的數(shù)學思想方法,屬于中檔題.10、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(?。〤(丙);A(甲,丙)B(?。〤(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.11、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質與識圖能力,一般根據(jù)四個選擇項來判斷對應的函數(shù)性質,即可排除三個不符的選項,屬于中檔題.12、D【解析】
直接利用復數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復數(shù)的模的運算法則的應用,復數(shù)的模的求法,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,代入已知條件進行化簡,根據(jù)復數(shù)相等的條件,求得的值.【詳解】設,由,得,所以,所以.故答案為:【點睛】本小題主要考查共軛復數(shù),考查復數(shù)相等的條件,屬于基礎題.14、【解析】
項和轉化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,∵,①故,②由①-②得,∴.顯然當時不滿足上式,∴故答案為:【點睛】本題考查了利用求,考查了學生綜合分析,轉化劃歸,數(shù)學運算,分類討論的能力,屬于中檔題.15、【解析】
根據(jù)雙曲線的標準方程寫出雙曲線的漸近線方程,結合題意可求得正實數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計算能力,屬于基礎題.16、【解析】
作出滿足約束條件的可行域,將目標函數(shù)視為可行解與點的斜率,觀察圖形斜率最小在點B處,聯(lián)立,解得點B坐標,即可求得答案.【詳解】作出滿足約束條件的可行域,該目標函數(shù)視為可行解與點的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點睛】本題考查分式型目標函數(shù)的線性規(guī)劃問題,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關于軸對稱,等價于的斜率互為相反數(shù),即,整理.設直線的方程為,與橢圓聯(lián)立,將韋達定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點,滿足直線與直線恰關于軸對稱.設直線的方程為,與橢圓聯(lián)立,整理得,.設,,定點.(依題意則由韋達定理可得,,.直線與直線恰關于軸對稱,等價于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當,即時,直線與直線恰關于軸對稱成立.特別地,當直線為軸時,也符合題意.綜上所述,存在軸上的定點,滿足直線與直線恰關于軸對稱.【點睛】本題考查橢圓方程,直線與橢圓位置關系,熟記橢圓方程簡單性質,熟練轉化題目條件,準確計算是關鍵,是中檔題.18、(Ⅰ);(Ⅱ);(Ⅲ)兩次活動效果均好,理由詳見解析.【解析】
(Ⅰ)結合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;(Ⅱ)設抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周,則有兩周為“高誠信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計算公式求解即可;(Ⅲ)結合表中的數(shù)據(jù)判斷即可.【詳解】(Ⅰ)表中十二周“水站誠信度”的平均數(shù).(Ⅱ)設抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周均為“高誠信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計算公式可得,.(Ⅲ)兩次活動效果均好.理由:活動舉辦后,“水站誠信度'由和看出,后繼一周都有提升.【點睛】本題考查平均數(shù)公式和古典概型概率計算公式;考查運算求解能力;利用列舉法正確列舉出所有的基本事件是求古典概型概率的關鍵;屬于中檔題、常考題型.19、(1)見解析(2)見解析【解析】
(1)根據(jù)的導函數(shù)進行分類討論單調性(2)欲證,只需證,構造函數(shù),證明,這時需研究的單調性,求其最大值即可【詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調遞增,在單調遞減;②當時,由得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增;③當時,,所以在上單調遞增;④當時,由,得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調遞增單調遞減所以.因為,所以,所以.即,所以當時,成立.【點睛】考查求函數(shù)單調性的方法和用函數(shù)的最值證明不等式的方法,難題.20、(1)函數(shù)單調減區(qū)間為;單調增區(qū)間為.(2)(3)【解析】
(1)據(jù)導數(shù)和函數(shù)單調性的關系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構造函數(shù),利用導數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導,再分類討論,根據(jù)導數(shù)和函數(shù)單調性以及最值得關系即可求出的范圍【詳解】解:(1)當時,因為,當時,;當時,.所以函數(shù)單調減區(qū)間為;單調增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設,,則,所以函數(shù)在上單調遞減,在上單調遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數(shù)在上單調遞增,所以函數(shù)至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當時,,所以,所以,所以當時,函數(shù)的值域為.所以,存在,使得,即,①且當時,,所以函數(shù)在上單調遞增,在上單調遞減.因為函數(shù)有兩個零點,,所以.②設,,則,所以函數(shù)在單調遞增,由于,所以當時,.所以,②式中的,又由①式,得.由第(1)小題可知,當時,函數(shù)在上單調遞減,所以,即.當時,(ⅰ)由于,所以得,又因為,且函數(shù)在上單調遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個零點;(ⅱ)由于,令,設,,由于時,,,所以設,即.由①式,得,當時,,且,同理可得函數(shù)在上也恰有一個零點.綜上,.【點睛】本題考查含參數(shù)的導數(shù)的單調性,利用導數(shù)求不等式恒成立問題,以及考查函數(shù)零點問題,考查學生的計算能力,是綜合性較強的題.21、(1);(2).【解析】
(1)設等差數(shù)列的公差為,根據(jù)題意得出關于和的方程組,解出這兩個量的值,然后利用等差數(shù)列的通項公式可得出數(shù)列的通項公式;(2)求出,可得出,可知當為奇數(shù)時不等式不成立,只
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預防感冒面試題及答案
- 恐懼死亡測試題及答案
- 2.4圓周角(第1課時圓周角定理)(教學課件)數(shù)學蘇科版九年級上冊
- 保安執(zhí)勤裝備使用課件
- 保安崗位知識培訓課件
- 操場草坪清理方案(3篇)
- 節(jié)能資金規(guī)劃方案(3篇)
- 一輪創(chuàng)新思維歷史(岳麓版)練習第四單元第8講鴉片戰(zhàn)爭甲午中日戰(zhàn)爭和八國聯(lián)軍侵華
- 性格的塑造課件
- 1.2從立體圖形到平面圖形第1課時(課件)北師大版七年級數(shù)學上冊
- 老年上消化道出血急診診療專家共識(2024版)解讀
- 化工過程安全管理導則AQT 3034-2022知識培訓
- 水庫閘門維修合同范例
- 2024屆新高考語文高中古詩文必背72篇 【原文+注音+翻譯】
- 車輛運輸協(xié)議書
- 家庭成員及主要社會關系的政審材料
- 光伏設計施工圖總說明
- 網(wǎng)絡設備項目驗收方案
- 2024年首屆全國“紅旗杯”班組長大賽考試題庫1400題(含答案)
- 《婚姻家庭輔導服務規(guī)范》
- 高鐵保潔報告
評論
0/150
提交評論