




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆重慶市梁平縣中考聯考數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.2018年1月,“墨子號”量子衛(wèi)星實現了距離達7600千米的洲際量子密鑰分發(fā),這標志著“墨子號”具備了洲際量子保密通信的能力.數字7600用科學記數法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×1022.二次函數y=ax2+bx+c(a,b,c為常數)中的x與y的部分對應值如表所示:x-1013y33下列結論:(1)abc<0(2)當x>1時,y的值隨x值的增大而減??;(3)16a+4b+c<0(4)x=3是方程ax2+(b-1)x+c=0的一個根;其中正確的個數為()A.4個 B.3個 C.2個 D.1個3.為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費;②年用水量不超過240m1的該市居民家庭按第三檔水價交費;③該市居民家庭年用水量的中位數在150~180m1之間;④該市居民家庭年用水量的眾數約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④4.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個5.如圖,BC⊥AE于點C,CD∥AB,∠B=55°,則∠1等于()A.35° B.45° C.55° D.25°6.如圖所示的四個圖案是四國冬季奧林匹克運動會會徽圖案上的一部分圖形,其中為軸對稱圖形的是()A. B. C. D.7.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm8.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(-1,0),其部分圖象如圖所示,下列結論:①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=-1,x2=3;③3a+c>0;④當y>0時,x的取值范圍是-1≤x<3;⑤當x<0時,y隨x增大而增大.其中結論正確的個數是()A.4個 B.3個 C.2個 D.1個9.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,210.已知關于x的方程x2﹣4x+c+1=0有兩個相等的實數根,則常數c的值為(
)A.﹣1 B.0 C.1 D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.若am=5,an=6,則am+n=________.12.邊長為6的正六邊形外接圓半徑是_____.13.如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關于對角線AC對稱,若DM=1,則tan∠ADN=.14.已知線段a=4,線段b=9,則a,b的比例中項是_____.15.如果一個正多邊形的中心角為72°,那么這個正多邊形的邊數是.16.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉α(0°<α<360°),得到線段AC’,連接DC’,當DC’//BC時,旋轉角度α的值為_________,三、解答題(共8題,共72分)17.(8分)矩形AOBC中,OB=4,OA=1.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標系.F是BC邊上一個動點(不與B,C重合),過點F的反比例函數y=(k>0)的圖象與邊AC交于點E。當點F運動到邊BC的中點時,求點E的坐標;連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數的解析式.18.(8分)博鰲亞洲論壇2018年年會于4月8日在海南博鰲拉開帷幕,組委會在會議中心的墻壁上懸掛會旗,已知矩形DCFE的兩邊DE,DC長分別為1.6m,1.2m.旗桿DB的長度為2m,DB與墻面AB的夾角∠DBG為35°.當會旗展開時,如圖所示,(1)求DF的長;(2)求點E到墻壁AB所在直線的距離.(結果精確到0.1m.參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(8分)2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調查,根據學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調查結果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖.請你根據圖中提供的信息完成下列問題:(1)求被調查學生的人數,并將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中的A等對應的扇形圓心角的度數;(3)已知該校有1500名學生,估計該校學生對政策內容了解程度達到A等的學生有多少人?20.(8分)許昌文峰塔又稱文明寺塔,為全國重點文物保護單位,某校初三數學興趣小組的同學想要利用學過的知識測量文峰塔的高度,他們找來了測角儀和卷尺,在點A處測得塔頂C的仰角為30°,向塔的方向移動60米后到達點B,再次測得塔頂C的仰角為60°,試通過計算求出文峰塔的高度CD.(結果保留兩位小數)21.(8分)如圖,在平面直角坐標系中,二次函數y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.22.(10分)如圖,某高速公路建設中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).23.(12分)在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規(guī)則如下:在兩個盒子內分別裝入標有數字1,2,3,4的四個和標有數字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數字之和小于5,那么小王去,否則就是小李去.(1)用樹狀圖或列表法求出小王去的概率;(2)小李說:“這種規(guī)則不公平”,你認同他的說法嗎?請說明理由.24.已知:如圖,,,.求證:.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.2、B【解析】
(1)利用待定系數法求出二次函數解析式為y=-x2+x+3,即可判定正確;(2)求得對稱軸,即可判定此結論錯誤;(3)由當x=4和x=-1時對應的函數值相同,即可判定結論正確;(4)當x=3時,二次函數y=ax2+bx+c=3,即可判定正確.【詳解】(1)∵x=-1時y=-,x=0時,y=3,x=1時,y=,∴,解得∴abc<0,故正確;(2)∵y=-x2+x+3,∴對稱軸為直線x=-=,所以,當x>時,y的值隨x值的增大而減小,故錯誤;(3)∵對稱軸為直線x=,∴當x=4和x=-1時對應的函數值相同,∴16a+4b+c<0,故正確;(4)當x=3時,二次函數y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一個根,故正確;綜上所述,結論正確的是(1)(3)(4).故選:B.【點睛】本題考查了二次函數的性質,主要利用了待定系數法求二次函數解析式,二次函數的增減性,二次函數與不等式,根據表中數據求出二次函數解析式是解題的關鍵.3、B【解析】
利用條形統(tǒng)計圖結合中位數和中位數的定義分別分析得出答案.【詳解】①由條形統(tǒng)計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),
×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費,正確;
②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),
∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費,故此選項錯誤;
③∵5萬個數據的中間是第25000和25001的平均數,
∴該市居民家庭年用水量的中位數在120-150之間,故此選項錯誤;
④該市居民家庭年用水量為110m1有1.5萬戶,戶數最多,該市居民家庭年用水量的眾數約為110m1,因此正確,
故選B.【點睛】此題主要考查了頻數分布直方圖以及中位數和眾數的定義,正確利用條形統(tǒng)計圖獲取正確信息是解題關鍵.4、D【解析】試題分析:根據等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進行分析.解:使△ABC是等腰三角形,當AB當底時,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當讓AB當腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關鍵是要分情況而定,所以學生一定要思維嚴密,不可遺漏.5、A【解析】
根據垂直的定義得到∠∠BCE=90°,根據平行線的性質求出∠BCD=55°,計算即可.【詳解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故選:A.【點睛】本題考查的是平行線的性質和垂直的定義,兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.6、D【解析】
根據軸對稱圖形的概念求解.【詳解】解:根據軸對稱圖形的概念,A、B、C都不是軸對稱圖形,D是軸對稱圖形.
故選D.【點睛】本題主要考查軸對稱圖形,軸對稱圖形的判斷方法:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形7、B【解析】
解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點E,∴,解得CE=cm,CD=3cm.故選B.考點:1.垂徑定理;2.圓周角定理;3.特殊角的三角函數值.8、B【解析】
解:∵拋物線與x軸有2個交點,∴b2﹣4ac>0,所以①正確;∵拋物線的對稱軸為直線x=1,而點(﹣1,0)關于直線x=1的對稱點的坐標為(3,0),∴方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3,所以②正確;∵x=﹣=1,即b=﹣2a,而x=﹣1時,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③錯誤;∵拋物線與x軸的兩點坐標為(﹣1,0),(3,0),∴當﹣1<x<3時,y>0,所以④錯誤;∵拋物線的對稱軸為直線x=1,∴當x<1時,y隨x增大而增大,所以⑤正確.故選:B.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.9、D【解析】
根據邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內切圓半徑==2,故選D.【點睛】本題考查了直角三角形內切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.10、D【解析】分析:由于方程x2﹣4x+c+1=0有兩個相等的實數根,所以?=b2﹣4ac=0,可得關于c的一元一次方程,然后解方程求出c的值.詳解:由題意得,(-4)2-4(c+1)=0,c=3.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】
根據同底數冪乘法性質am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點睛】本題考查了同底數冪乘法計算,屬于簡單題,熟悉法則是解題關鍵.12、6【解析】
根據正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,∴邊長為6的正六邊形外接圓半徑是6,故答案為:6.【點睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形是解題的關鍵.13、【解析】
M、N兩點關于對角線AC對稱,所以CM=CN,進而求出CN的長度.再利用∠ADN=∠DNC即可求得tan∠ADN.【詳解】解:在正方形ABCD中,BC=CD=1.
∵DM=1,
∴CM=2,
∵M、N兩點關于對角線AC對稱,
∴CN=CM=2.
∵AD∥BC,
∴∠ADN=∠DNC,故答案為【點睛】本題綜合考查了正方形的性質,軸對稱的性質以及銳角三角函數的定義.14、6【解析】
根據已知線段a=4,b=9,設線段x是a,b的比例中項,列出等式,利用兩內項之積等于兩外項之積即可得出答案.【詳解】解:∵a=4,b=9,設線段x是a,b的比例中項,∴,∴x2=ab=4×9=36,∴x=6,x=﹣6(舍去).故答案為6【點睛】本題主要考查比例線段問題,解題關鍵是利用兩內項之積等于兩外項之積解答.15、5【解析】試題分析:中心角的度數=,考點:正多邊形中心角的概念.16、15或255°【解析】如下圖,設直線DC′與AB相交于點E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當DC′∥BC時,旋轉角=15°;同理,當DC′′∥BC時,旋轉角=180°-45°-60°=255°;綜上所述,當旋轉角=15°或255°時,DC′//BC.故答案為:15°或255°.三、解答題(共8題,共72分)17、(1)E(2,1);(2);(1).【解析】
(1)先確定出點C坐標,進而得出點F坐標,即可得出結論;(2)先確定出點F的橫坐標,進而表示出點F的坐標,得出CF,同理表示出CE,即可得出結論;(1)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結論.【詳解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中點,∴F(4,),∵F在反比例y=函數圖象上,∴k=4×=6,∴反比例函數的解析式為y=,∵E點的坐標為1,∴E(2,1);(2)∵F點的橫坐標為4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的縱坐標為1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如圖,由(2)知,CF=,CE=,,過點E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折疊知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函數解析式為y=.點睛:此題是反比例函數綜合題,主要考查了待定系數法,中點坐標公式,相似三角形的判定和性質,銳角三角函數,求出CE:CF是解本題的關鍵.18、(1)1m.(1)1.5m.【解析】
(1)由題意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點M、N、H,利用sin∠DBM=及cos∠DEH=,可求出EH,HN即可得出答案.【詳解】解:(1)在Rt△DEF中,由題意知ED=1.6m,BD=1m,DF==1.答:DF長為1m.(1)分別做DM⊥AB,EN⊥AB,DH⊥EN,垂足分別為點M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=1?sin35°≈1.2.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6?cos35°≈1.3.∴EN=EH+HN=1.3+1.2=1.45≈1.5m.答:E點離墻面AB的最遠距離為1.5m.【點睛】本題主要考查三角函數的知識,牢記公式并靈活運用是解題的關鍵。19、(1)圖見解析;(2)126°;(3)1.【解析】
(1)利用被調查學生的人數=了解程度達到B等的學生數÷所占比例,即可得出被調查學生的人數,由了解程度達到C等占到的比例可求出了解程度達到C等的學生數,再利用了解程度達到A等的學生數=被調查學生的人數-了解程度達到B等的學生數-了解程度達到C等的學生數-了解程度達到D等的學生數可求出了解程度達到A等的學生數,依此數據即可將條形統(tǒng)計圖補充完整;(2)根據A等對應的扇形圓心角的度數=了解程度達到A等的學生數÷被調查學生的人數×360°,即可求出結論;(3)利用該?,F有學生數×了解程度達到A等的學生所占比例,即可得出結論.【詳解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).將條形統(tǒng)計圖補充完整,如圖所示.(2)42÷120×100%×360°=126°.答:扇形統(tǒng)計圖中的A等對應的扇形圓心角為126°.(3)1500×=1(人).答:該校學生對政策內容了解程度達到A等的學生有1人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,觀察條形統(tǒng)計圖及扇形統(tǒng)計圖,找出各數據,再利用各數量間的關系列式計算是解題的關鍵.20、51.96米.【解析】
先根據三角形外角的性質得出∠ACB=30°,進而得出AB=BC=1,在Rt△BDC中,,即可求出CD的長.【詳解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,∴(米).答:文峰塔的高度CD約為51.96米.【點睛】本題考查解直角三角形的應用,解題的關鍵是明確題意,利用銳角三角函數進行解答.21、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當a=時,D、O、C、B四點共圓.【解析】【分析】(1)根據二次函數的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(1)中A、B、D的坐標,得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點C(,-),從而得PB=3-=,PC=;再分情況討論:①當△AOD∽△BPC時,根據相似三角形性質得,
解得:a=3(舍去);②△AOD∽△CPB,根據相似三角形性質得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點M,根據已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點C也在此圓上,則MC=MB,根據兩點間的距離公式得一個關于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點A、B(點A在點B的左側),∴A(a,0),B(3,0),當x=0時,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當x=時,y=-,∴C(,-),∴PB=3-=,PC=,①當△AOD∽△BPC時,∴,即,
解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新能源行業(yè)智能電網技術與資本市場投資機會研究報告
- 2025年福建省紅十字基金會人員招聘2人模擬試卷及答案詳解(奪冠)
- 2025安徽阜陽市潁州區(qū)選調區(qū)內鄉(xiāng)鎮(zhèn)在編在崗教師60人模擬試卷及答案詳解(全優(yōu))
- 2025廣東韶關市“百萬英才匯南粵”行動計劃“粵聚英才粵見未來”南雄市中小學、幼兒園教師招聘及選聘106人考前自測高頻考點模擬試題及答案詳解一套
- 2025福建福州市晉安區(qū)公益性崗位招聘5人考前自測高頻考點模擬試題完整答案詳解
- 2025廣西桂林市象山區(qū)教育局招聘編外聘用人員1人模擬試卷及答案詳解(奪冠)
- 2025海南儋州市職業(yè)化社區(qū)工作者招聘擬聘(六)模擬試卷附答案詳解(突破訓練)
- 2025湖南郴州市汝城縣鄉(xiāng)鎮(zhèn)所屬事業(yè)單位引進汝城縣戶籍縣外工作人員5人考前自測高頻考點模擬試題完整參考答案詳解
- 2025年長安銀行面試題目及答案
- 全球價值鏈嵌入對汽車產業(yè)升級的影響研究
- MSOP(測量標準作業(yè)規(guī)范)測量SOP
- 低介電常數材料應用
- 水平三(五年級)體育《籃球:單手肩上投籃》說課稿課件
- 2023發(fā)電機自動準同期裝置整定計算技術導則
- GB/T 3672.1-2002橡膠制品的公差第1部分:尺寸公差
- 月度工作總結
- 《C++語言基礎》全套課件(完整版)
- 箱涵高支模方案
- 《社會工作倫理案例分析》課件 兒童和青少年社會工作倫理
- 藝人明星形象代言肖像權使用合同模板
- 綠化養(yǎng)護檢查記錄表
評論
0/150
提交評論