山東省安丘市、諸城市、五蓮縣、蘭山區(qū)2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
山東省安丘市、諸城市、五蓮縣、蘭山區(qū)2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
山東省安丘市、諸城市、五蓮縣、蘭山區(qū)2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
山東省安丘市、諸城市、五蓮縣、蘭山區(qū)2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
山東省安丘市、諸城市、五蓮縣、蘭山區(qū)2025屆高一下數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省安丘市、諸城市、五蓮縣、蘭山區(qū)2025屆高一下數(shù)學期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,是橢圓的左、右焦點,過的直線交橢圓于A,B兩點,若最大值為5,則橢圓的離心率為()A. B. C. D.2.甲、乙、丙、丁4名田徑選手參加集訓,將挑選一人參加400米比賽,他們最近10次測試成績的平均數(shù)和方差如下表;根據(jù)表中數(shù)據(jù),應選哪位選手參加比賽更有機會取得好成績?()甲乙丙丁平均數(shù)59575957方差12121010A.甲 B.乙 C.丙 D.丁3.在中,內角,,的對邊分別為,,,若,,,則的最小角為()A. B. C. D.4.已知向量,滿足,,,則()A.3 B.2 C.1 D.05.如圖所示,向量,則()A. B. C. D.6.若關于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,7.在中,,點是內(包括邊界)的一動點,且,則的最大值是()A. B. C. D.8.已知扇形的面積為2cm2,扇形圓心角θ的弧度數(shù)是4,則扇形的周長為()A.2cm B.4cm C.6cm D.8cm9.若,則下列不等式正確的是()A. B. C. D.10.設等差數(shù)列的前項的和為,若,,且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,,若,則__________.12.已知直線:與圓交于,兩點,過,分別作的垂線與軸交于,兩點,若,則__________.13.若,,則__________.14.某幼兒園對兒童記憶能力的量化評價值和識圖能力的量化評價值進行統(tǒng)計分析,得到如下數(shù)據(jù):468103568由表中數(shù)據(jù),求得回歸直線方程中的,則.15.已知數(shù)列是公差不為0的等差數(shù)列,,且成等比數(shù)列,則的前9項和_______.16.若直線與直線互相平行,那么a的值等于_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知:的頂點,,.(1)求AB邊上的中線CD所在直線的方程;(2)求的面積.18.記公差不為零的等差數(shù)列{an}的前n項和為Sn,已知=2,是與的等比中項.(Ⅰ)求數(shù)列{an}的通項公式;(Ⅱ)求數(shù)列{}的前n項和Tn.19.已知函數(shù).(1)求證:;(2)若角滿足,求銳角的取值范圍.20.已知平面向量,.(1)若與垂直,求;(2)若,求.21.數(shù)學的發(fā)展推動著科技的進步,正是基于線性代數(shù)、群論等數(shù)學知識的極化碼原理的應用,華為的5G技術領先世界.目前某區(qū)域市場中5G智能終端產品的制造由H公司及G公司提供技術支持據(jù)市場調研預測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術的智能終端產品分別占比及假設兩家公司的技術更新周期一致,且隨著技術優(yōu)勢的體現(xiàn)每次技術更新后,上一周期采用G公司技術的產品中有20%轉而采用H公司技術,采用H公司技術的僅有5%轉而采用G公司技術設第n次技術更新后,該區(qū)域市場中采用H公司與G公司技術的智能終端產品占比分別為及,不考慮其它因素的影響.(1)用表示,并求實數(shù)使是等比數(shù)列;(2)經過若干次技術更新后該區(qū)域市場采用H公司技術的智能終端產品占比能否達到75%以上?若能,至少需要經過幾次技術更新;若不能,說明理由?(參考數(shù)據(jù):)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

,故的最小值為,當且僅當軸時,最小,此時,計算得到答案.【詳解】,最大值為5,故的最小值為,當且僅當軸時,最小,此時,即又因為,可得,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉化能力.2、D【解析】

由平均數(shù)及方差綜合考慮得結論.【詳解】解:由四位選手的平均數(shù)可知,乙與丁的平均速度快;再由方差越小發(fā)揮水平越穩(wěn)定,可知丙與丁穩(wěn)定,故應選丁選手參加比賽更有機會取得好成績.故選:.【點睛】本題考查平均數(shù)與方差,熟記結論是關鍵,屬于基礎題.3、A【解析】

由三角形大邊對大角可知所求角為角,利用余弦定理可求得,進而得到結果.【詳解】的最小角為角,則故選:【點睛】本題考查利用余弦定理解三角形的問題,關鍵是明確三角形中大邊對大角的特點,進而根據(jù)余弦定理求得所求角的余弦值.4、A【解析】

由,求出,代入計算即可.【詳解】由題意,則.故答案為A.【點睛】本題考查了向量的數(shù)量積,考查了學生的計算能力,屬于基礎題.5、A【解析】

根據(jù)平面向量的加法的幾何意義、平面向量的基本定理、平面向量數(shù)乘運算的性質,結合進行求解即可.【詳解】.故選:A【點睛】本題考查了平面向量基本定理及加法運算的幾何意義,考查了平面向量數(shù)乘運算的性質,屬于基礎題.6、D【解析】x-1-x-2=x-1-∵關于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴實數(shù)a的取值范圍為-∞,-2∪7、B【解析】

根據(jù)分析得出點的軌跡為線段,結合圖形即可得到的最大值.【詳解】如圖:取,,,點是內(包括邊界)的一動點,且,根據(jù)平行四邊形法則,點的軌跡為線段,則的最大值是,在中,,,,,故選:B【點睛】此題考查利用向量方法解決平面幾何中的線段長度最值問題,數(shù)形結合處理可以避免純粹的計算,降低難度.8、C【解析】設扇形的半徑為R,則R2θ=2,∴R2=1R=1,∴扇形的周長為2R+θ·R=2+4=6(cm).9、C【解析】

根據(jù)不等式性質,結合特殊值即可比較大小.【詳解】對于A,當,滿足,但不滿足,所以A錯誤;對于B,當時,不滿足,所以B錯誤;對于C,由不等式性質“不等式兩邊同時加上或減去同一個數(shù)或式子,不等式符號不變”,所以由可得,因而C正確;對于D,當時,不滿足,所以D錯誤.綜上可知,C為正確選項,故選:C.【點睛】本題考查了不等式大小比較,不等式性質及特殊值的簡單應用,屬于基礎題.10、C【解析】,,,,,,故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、-3【解析】由可知,解得,12、4【解析】

由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長可得答案.【詳解】因為,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識知在梯形中,.故答案為4【點睛】解決直線與圓的綜合問題時,一方面,要注意運用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識使問題較為簡捷地得到解決.13、【解析】

由等比數(shù)列前n項公式求出已知等式左邊的和,再求解.【詳解】易知不合題意,∴,若,則,不合題意,∴,,∴,,又,∴.故答案為:.【點睛】本題考查等比數(shù)列的前n項和公式,解題時需分類討論,首先對的情形進行說明,然后按是否為1分類.14、-0.1【解析】

分別求出和的均值,代入線性回歸方程即可.【詳解】由表中數(shù)據(jù)易得,,由在直線方程上,可得【點睛】此題考查線性回歸方程形式,表示在回歸直線上代入即可,屬于簡單題目.15、117【解析】

由成等比數(shù)列求出公差,由前項公式求和.【詳解】設數(shù)列是公差為,則,由成等比數(shù)列得,解得,∴.故答案為:117.【點睛】本題考查等差數(shù)列的前項和公式,考查等比數(shù)列的性質.解題關鍵是求出數(shù)列的公差.16、;【解析】由題意得,驗證滿足條件,所以三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)11.【解析】

(1)直接利用已知條件求出AB邊上的中點,即可求直線的方程.(2)利用所求出的直線方程利用分割法求出三角形的面積,或者求出及直線AB的方程,可得點C到直線AB的距離,求出三角形的面積.【詳解】(1)∵線段AB的中點D的坐標為,所以,由兩點式方程可得,AB邊上的中線CD所在直線的方程為,即.(2)法1:因為,點A到直線CD的距離是,所以的面積是.法2:因為,由兩點式得直線AB的方程為:,點C到直線AB的距離是,所以的面積是.【點睛】本題考查直線方程求法與點到直線距離公式應用,屬于基礎題.18、(Ⅰ)an=2n(Ⅱ)【解析】

(Ⅰ)由a4是a2與a8的等比中項,可以求出公差,這樣就可以求出求數(shù)列{an}的通項公式;(Ⅱ)先求出等差數(shù)列{an}的前n項和為Sn,用裂項相消法求出求數(shù)列{}的前n項和Tn.【詳解】解:(Ⅰ)由已知,,即(2+3d)2=(2+d)(2+7d),解得:d=2(d≠0),∴an=2+2(n-1)=2n;(Ⅱ)由(Ⅰ)得,,∴,∴=.【點睛】本題考查了等差數(shù)列的通項公式、前n項和公式.重點考查了裂項相消法求數(shù)列前n項和.19、(1)證明見解析;(2).【解析】

(1)根據(jù)函數(shù)的解析式化簡計算可得出;(2)由(1)得,由,可得,并推導出函數(shù)為上的增函數(shù),可得出,由為銳角可得出,由此可得出銳角的取值范圍.【詳解】(1),;(2)任取、,且,,,,,所以,函數(shù)是上的增函數(shù),由(1)知:即,由,得,又,即有,故有,即,為銳角,則,,的取值范圍是.【點睛】本題考查利用解析式化簡計算,同時也考查了利用函數(shù)的單調性解不等式,涉及三角不等式的求解,考查計算能力,屬于中等題.20、(1);(2)【解析】

(1)根據(jù)垂直數(shù)量積為0求解即可.(2)根據(jù)平行的公式求解,再計算即可.【詳解】解:(1)由已知得,,解得或.因為,所以.(2)若,則,所以或.因為,所以.所以,所以.【點睛】本題主要考查了向量垂直與平行的運用以及模長的計算,屬于基礎題型.21、(1),;(2)見解析【解析】

(1)根據(jù)題意經過次技術更新后,通過整理得到,構造是等比數(shù)列,求出,得證;(2)由(1)可求出通項,令,通過相關計算即可求出n的最小值,從而得到答案.【詳解】(1)由題意,可設5商用初期,該區(qū)域市場中采用H公司與G公司技術的智能終端產品的占比分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論