




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆西藏山南地區(qū)第二高級中學(xué)高一下數(shù)學(xué)期末調(diào)研試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,測量河對岸的塔高AB時可以選與塔底B在同一水平面內(nèi)的兩個測點(diǎn)C與D,測得,,CD=30,并在點(diǎn)C測得塔頂A的仰角為60°,則塔高AB等于A. B. C. D.2.在中,角A、B、C的對邊分別為a、b、c,若,則的形狀為()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形3.在等差數(shù)列中,,則()A.5 B.8 C.10 D.144.已知向量,且,則()A. B. C. D.5.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位6.已知扇形的面積為,半徑為,則扇形的圓心角的弧度數(shù)為A. B. C. D.7.若兩等差數(shù)列,前項(xiàng)和分別為,,滿足,則的值為().A. B. C. D.8.在中,分別是角的對邊,,則角為()A. B. C. D.或9.已知函數(shù),那么下列式子:①;②;③;④;其中恒成立的是()A.①② B.②③ C.①②④ D.②③④10.函數(shù)定義域是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若為的最小內(nèi)角,則函數(shù)的值域?yàn)開____.12.已知一組數(shù)據(jù)6,7,8,8,9,10,則該組數(shù)據(jù)的方差是____.13.方程的解為_________.14.?dāng)?shù)列通項(xiàng)公式,前項(xiàng)和為,則________.15.兩圓交于點(diǎn)和,兩圓的圓心都在直線上,則____________;16.?dāng)?shù)列的前項(xiàng)和,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知直線l經(jīng)過點(diǎn).(1)若直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)若,兩點(diǎn)到直線的距離相等,求直線的方程.18.已知函數(shù),數(shù)列中,若,且.(1)求證:數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列的前項(xiàng)和為,求證:.19.已知三棱柱中,三個側(cè)面均為矩形,底面為等腰直角三角形,,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上運(yùn)動.(1)求證;(2)當(dāng)點(diǎn)運(yùn)動到某一位置時,恰好使二面角的平面角的余弦值為,求點(diǎn)到平面的距離;(3)在(2)的條件下,試確定線段上是否存在一點(diǎn),使得平面?若存在,確定其位置;若不存在,說明理由.20.已知數(shù)列的各項(xiàng)均為正數(shù),對任意,它的前項(xiàng)和滿足,并且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),為數(shù)列的前項(xiàng)和,求.21.如圖1,在直角梯形中,,,點(diǎn)在上,且,將沿折起,使得平面平面(如圖2).為中點(diǎn)(1)求證:;(2)求四棱錐的體積;(3)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請說明理由
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】在中,由正弦定理得,解得在中,2、D【解析】
由正弦定理化簡,得到,由此得到三角形是等腰或直角三角形,得到答案.【詳解】由題意知,,結(jié)合正弦定理,化簡可得,所以,則,所以,得或,所以三角形是等腰或直角三角形.故選D.【點(diǎn)睛】本題考查了正弦定理和余弦定理在解三角形中的應(yīng)用.在解三角形問題中經(jīng)常把邊的問題轉(zhuǎn)化成角的正弦或余弦函數(shù),利用三角函數(shù)的關(guān)系來解決問題,屬于基礎(chǔ)題.3、B【解析】試題分析:設(shè)等差數(shù)列的公差為,由題設(shè)知,,所以,所以,故選B.考點(diǎn):等差數(shù)列通項(xiàng)公式.4、A【解析】
直接利用向量平行的充要條件列方程求解即可.【詳解】由可得到.故選A【點(diǎn)睛】利用向量的位置關(guān)系求參數(shù)是出題的熱點(diǎn),主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.5、D【解析】
根據(jù)三角函數(shù)圖象的平移變換可直接得到圖象變換的過程.【詳解】因?yàn)椋韵蛴移揭苽€單位即可得到的圖象.故選:D.【點(diǎn)睛】本題考查三角函數(shù)圖象的平移變換,難度較易.注意左右平移時對應(yīng)的規(guī)律:左加右減.6、A【解析】
設(shè)半徑為,圓心角為,根據(jù)扇形面積公式,結(jié)合題中數(shù)據(jù),即可求出結(jié)果.【詳解】設(shè)半徑為,圓心角為,則對應(yīng)扇形面積,又,,則故選A.【點(diǎn)睛】本題主要考查由扇形面積求圓心角的問題,熟記扇形面積公式即可,屬于??碱}型.7、B【解析】解:因?yàn)閮傻炔顢?shù)列、前項(xiàng)和分別為、,滿足,故,選B8、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【詳解】在中,因?yàn)?,由正弦定理,可得,又由,且,所以或,故選D.【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟練利用正弦定理,求得的值是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、A【解析】
根據(jù)正弦函數(shù)的周期性及對稱性,逐項(xiàng)判斷,即可得到本題答案.【詳解】由,得,所以的最小正周期為,即,故①正確;由,令,得的對稱軸為,所以是的對稱軸,不是的對稱軸,故②正確,③不正確;由,令,得的對稱中心為,所以不是的對稱中心,故④不正確.故選:A【點(diǎn)睛】本題主要考查正弦函數(shù)的周期性以及對稱性.10、A【解析】
若函數(shù)有意義,則需滿足,進(jìn)而求解即可【詳解】由題,則,解得,故選:A【點(diǎn)睛】本題考查具體函數(shù)的定義域,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
依題意,,利用輔助角公式得,利用正弦函數(shù)的單調(diào)性即可求得的取值范圍,在利用換元法以及同角三角函數(shù)基本關(guān)系式把所求問題轉(zhuǎn)化結(jié)合基本不等式即可求解.【詳解】∵為的最小內(nèi)角,故,又,因?yàn)?,故,∴取值范圍是.令,則且∴,令,由雙勾函數(shù)可知在上為增函數(shù),故,故.故答案為:.【點(diǎn)睛】本題考查同角的三角函數(shù)的基本關(guān)系、輔助角公式以及正弦型函數(shù)的值域,注意根據(jù)代數(shù)式的結(jié)構(gòu)特點(diǎn)換元后將三角函數(shù)的問題轉(zhuǎn)化為雙勾函數(shù)的問題,本題屬于中檔題.12、.【解析】
由題意首先求得平均數(shù),然后求解方差即可.【詳解】由題意,該組數(shù)據(jù)的平均數(shù)為,所以該組數(shù)據(jù)的方差是.【點(diǎn)睛】本題主要考查方差的計(jì)算公式,屬于基礎(chǔ)題.13、【解析】
根據(jù)特殊角的三角函數(shù)及正切函數(shù)的周期為kπ,即可得到原方程的解.【詳解】則故答案為:【點(diǎn)睛】此題考查學(xué)生掌握正切函數(shù)的圖象及周期性,是一道基礎(chǔ)題.14、1【解析】
利用裂項(xiàng)求和法求出,取極限進(jìn)而即可求解.【詳解】,故,所以,故答案為:1【點(diǎn)睛】本題考查了裂項(xiàng)求和法以及求極限值,屬于基礎(chǔ)題.15、【解析】
由圓的性質(zhì)可知,直線與直線垂直,,直線的斜率,,解得.故填:3.【點(diǎn)睛】本題考查了相交圓的幾何性質(zhì),和直線垂直的關(guān)系,考查數(shù)形結(jié)合的思想與計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
根據(jù)數(shù)列前項(xiàng)和的定義即可得出.【詳解】解:因?yàn)樗裕蚀鸢笧椋海军c(diǎn)睛】考查數(shù)列的定義,以及數(shù)列前項(xiàng)和的定義,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(2)或(2)或【解析】
(2)討論直線是否過原點(diǎn),利用截距相等進(jìn)行求解即可.(2)根據(jù)點(diǎn)到直線的距離相等,分直線平行和直線過A,B的中點(diǎn)兩種情況進(jìn)行求解即可.【詳解】(2)若直線過原點(diǎn),則設(shè)為y=kx,則k=2,此時直線方程為y=2x,當(dāng)直線不過原點(diǎn),設(shè)方程為2,即x+y=a,此時a=2+2=2,則方程為x+y=2,綜上直線方程為y=2x或x+y=2.(2)若A,B兩點(diǎn)在直線l同側(cè),則AB∥l,AB的斜率k2,即l的斜率為2,則l的方程為y﹣2=x﹣2,即y=x+2,若A,B兩點(diǎn)在直線的兩側(cè),即l過A,B的中點(diǎn)C(2,0),則k2,則l的方程為y﹣0=﹣2(x﹣2),即y=﹣2x+4,綜上l的方程為y=﹣2x+4或y=x+2.【點(diǎn)睛】本題主要考查直線方程的求解,結(jié)合直線截距相等以及點(diǎn)到直線距離相等,進(jìn)行分類討論是解決本題的關(guān)鍵.18、(1)見解析;(2)見解析【解析】
(1)將代入到函數(shù)表達(dá)式中,得,兩邊都倒過來,即可證明數(shù)列是等比數(shù)列;(2)由(1)得出an的通項(xiàng)公式,然后根據(jù)不等式<在求和時進(jìn)行放縮法的應(yīng)用,再根據(jù)等比數(shù)列求和公式進(jìn)行計(jì)算,即可證出.【詳解】(1)由函數(shù),在數(shù)列中,若,得:,上式兩邊都倒過來,可得:==﹣2,∴﹣1=﹣2﹣1=﹣1=1(﹣1).∵﹣1=1.∴數(shù)列是以1為首項(xiàng),1為公比的等比數(shù)列.(2)由(1),可知:=1n,∴an=,n∈N*.∵當(dāng)n∈N*時,不等式<成立.∴Sn=a1+a2+…+an===﹣?<.∴.【點(diǎn)睛】本題主要考查數(shù)列與函數(shù)的綜合應(yīng)用,根據(jù)條件推出數(shù)列的遞推公式,由遞推公式推出通項(xiàng)公式與放縮法的應(yīng)用是解決本題的兩個關(guān)鍵點(diǎn),屬于中檔題.19、(1)見解析;(2);(3)存在,為中點(diǎn).【解析】
(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點(diǎn)建立坐標(biāo)系,設(shè)E(m,0,2),要證A1C⊥AE,可證,只需證明,利用向量的數(shù)量積運(yùn)算即可證明;(2)分別求出平面EA1D、平面A1DB的一個法向量,由兩法向量夾角余弦值的絕對值等于,解得m值,由此可得答案;(3)在(2)的條件下,設(shè)F(x,y,0),可知與平面A1DB的一個法向量平行,由此可求出點(diǎn)F坐標(biāo),進(jìn)而求出||,即得答案.【詳解】(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點(diǎn)建立坐標(biāo)系,設(shè)E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因?yàn)椋?+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),設(shè)=(x,y,z)為平面EA1D的一個法向量,則即,?。剑?,m,﹣2m),=(2,0,﹣1),設(shè)=(x,y,z)為平面A1DB的一個法向量,則,即,?。剑?,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值為,得||=,解得m=1,平面A1DB的一個法向量=(1,﹣1,2),根據(jù)點(diǎn)E到面的距離為:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)為平面A1DB的一個法向量,設(shè)F(x,y,0),則=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的長度為,此時點(diǎn)F(0,1,0).存在F點(diǎn)為AC中點(diǎn).【點(diǎn)睛】本題考查重點(diǎn)考查直線與平面垂直的性質(zhì)、二面角的平面角及其求法、空間點(diǎn)、線、面間距離計(jì)算,考查學(xué)生空間想象能力、推理論證能力.20、(1),(2)【解析】
(1)根據(jù)與的關(guān)系,利用臨差法得到,知公差為3;再由代入遞推關(guān)系求;(2)觀察數(shù)列的通項(xiàng)公式,相鄰兩項(xiàng)的和有規(guī)律,故采用并項(xiàng)求和法,求其前項(xiàng)和.【詳解】(1)對任意,有,①當(dāng)時,有,解得或.當(dāng)時,有.②①-②并整理得.而數(shù)列的各項(xiàng)均為正數(shù),.當(dāng)時,,此時成立;當(dāng)時,,此時,不成立,舍去.,.(2).【點(diǎn)睛】已知與的遞推關(guān)系,利用臨差法求時,要注意對下標(biāo)與分兩種情況,即;數(shù)列求和時要先觀察通項(xiàng)特點(diǎn),再決定采用什么方法.21、(1)證明見解析(2)(3)存在,【解析】
(1)證明DG⊥AE,再根據(jù)面面垂直的性質(zhì)得出DG⊥平面ABCE即可證明(2)分別計(jì)算DG和梯形ABCE的面積,即可得出棱錐的體積;(3)過點(diǎn)C作CF∥AE交AB于點(diǎn)F,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年皮膚科護(hù)理管理制度培訓(xùn)考試題及答案解析
- 2025年化妝品從業(yè)人員培訓(xùn)試題及答案
- 2025年高中音樂鑒賞知識考核試題及答案
- 2025年黑龍江省《保密知識競賽必刷50題》考試題庫附參考答案AB卷帶詳細(xì)解析
- 2024年甘肅省蘭州市永登縣柳樹鄉(xiāng)招聘社區(qū)工作者真題附答案詳解
- 劉不言生化課件
- 列車服務(wù)實(shí)務(wù)課件
- 劉崗小學(xué)4年級數(shù)學(xué)試卷
- 九年級期末模擬數(shù)學(xué)試卷
- 淮陰區(qū)開明數(shù)學(xué)試卷
- 醫(yī)藥行業(yè)數(shù)字化營銷方案研究
- 2025年大眾點(diǎn)評CNY營銷解決方案
- 臨床常用血生化檢查-血清電解質(zhì)檢查(健康評估)
- 倉庫人員防暑措施方案
- 2024至2030年中國晶圓代工行業(yè)市場供需形勢分析及投資前景評估報(bào)告
- 小學(xué)教師嘉獎主要事跡材料簡短
- 空地一體5G增強(qiáng)低空網(wǎng)絡(luò)白皮書2024
- 2024年山東省高考生物試卷(真題+答案)
- 沼液運(yùn)輸合同
- 2024年楚雄州金江能源集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- 2023年河南省對口升學(xué)養(yǎng)殖類專業(yè)課試卷
評論
0/150
提交評論