浙江省諸暨市牌頭中學2024年高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
浙江省諸暨市牌頭中學2024年高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
浙江省諸暨市牌頭中學2024年高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
浙江省諸暨市牌頭中學2024年高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
浙江省諸暨市牌頭中學2024年高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省諸暨市牌頭中學2024年高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若向量的夾角為,且,,則向量與向量的夾角為()A. B. C. D.2.在等差數(shù)列中,已知,則數(shù)列的前9項之和等于()A.9 B.18 C.36 D.523.設是兩條不同的直線,是兩個不同的平面,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則4.已知,則的最小值為()A.2 B.0 C.-2 D.-45.若x+2y=4,則2x+4y的最小值是()A.4 B.8 C.2 D.46.設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若,則的形狀一定是()A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等邊三角形7.在中,,,,則的面積是().A. B. C.或 D.或8.右圖中,小方格是邊長為1的正方形,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.9.已知向量,,,且,則()A. B. C. D.10.的值等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.甲、乙兩人要到某地參加活動,他們都隨機從火車、汽車、飛機三種交通工具中選擇一種,則他們選擇相同交通工具的概率為_________.12.數(shù)列中,已知,50為第________項.13.已知角的終邊經(jīng)過點,若,則______.14.在中,已知,則下列四個不等式中,正確的不等式的序號為____________①②③④15.若,則_______.16._________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的圖象關于直線對稱,且圖象上相鄰兩個最高點的距離為.(1)求與的值;(2)若,求的值.18.已知圓經(jīng)過、、三點.(1)求圓的標準方程;(2)若過點的直線被圓截得的弦的長為,求直線的傾斜角.19.已知向量,,且(1)求·及;(2)若,求的最小值20.某公司為了提高職工的健身意識,鼓勵大家加入健步運動,要求200名職工每天晚上9:30上傳手機計步截圖,對于步數(shù)超過10000的予以獎勵.圖1為甲乙兩名職工在某一星期內(nèi)的運動步數(shù)統(tǒng)計圖,圖2為根據(jù)這星期內(nèi)某一天全體職工的運動步數(shù)做出的頻率分布直方圖.(1)在這一周內(nèi)任選兩天檢查,求甲乙兩人兩天全部獲獎的概率;(2)請根據(jù)頻率分布直方圖,求出該天運動步數(shù)不少于15000的人數(shù),并估計全體職工在該天的平均步數(shù);(3)如果當天甲的排名為第130名,乙的排名為第40名,試判斷做出的是星期幾的頻率分布直方圖.21.某校從參加高三模擬考試的學生中隨機抽取名學生,將其數(shù)學成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;(3)用分層抽樣的方法在分數(shù)段為的學生中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取個,求至多有人在分數(shù)段內(nèi)的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

結合數(shù)量積公式可求得、、的值,代入向量夾角公式即可求解.【詳解】設向量與的夾角為,因為的夾角為,且,,所以,,所以,又因為所以,故選B【點睛】本題考查向量的數(shù)量積公式,向量模、夾角的求法,考查化簡計算的能力,屬基礎題.2、B【解析】

利用等差數(shù)列的下標性質(zhì),可得出,再由等差數(shù)列的前項和公式求出的值.【詳解】在等差數(shù)列中,故選:B【點睛】本題考查了等差數(shù)列的下標性質(zhì)、以及等差數(shù)列的前項和公式,考查了數(shù)學運算能力.3、D【解析】

對于A,利用線面平行的判定可得A正確.對于B,利用線面垂直的性質(zhì)可得B正確.對于C,利用面面垂直的判定可得C正確.根據(jù)平面與平面的位置關系即可判斷D不正確.【詳解】對于A,根據(jù)平面外的一條直線與平面內(nèi)的一條直線平行,則這條直線平行于這個平面,可判定A正確.對于B,根據(jù)垂直于同一個平面的兩條直線平行,判定B正確.對于C,根據(jù)一個平面過另一個平面的垂線,則這兩個平面垂直,可判定C正確.對于D,若,則或相交,所以D不正確.故選:D【點睛】本題主要考查了線面平行和面面垂直的判定,同時考查了線面垂直的性質(zhì),屬于中檔題.4、D【解析】

根據(jù)不等式組畫出可行域,借助圖像得到最值.【詳解】根據(jù)不等式組畫出可行域得到圖像:將目標函數(shù)化為,根據(jù)圖像得到當目標函數(shù)過點時取得最小值,代入此點得到z=-4.故答案為:D.【點睛】利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標系內(nèi)作出可行域;(2)考慮目標函數(shù)的幾何意義,將目標函數(shù)進行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型);(3)確定最優(yōu)解:根據(jù)目標函數(shù)的類型,并結合可行域確定最優(yōu)解;(4)求最值:將最優(yōu)解代入目標函數(shù)即可求出最大值或最小值。5、B【解析】試題分析:由,當且僅當時,即等號成立,故選B.考點:基本不等式.6、C【解析】

將角C用角A角B表示出來,和差公式化簡得到答案.【詳解】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,角A,B,C為△ABC的內(nèi)角故答案選C【點睛】本題考查了三角函數(shù)和差公式,意在考查學生的計算能力.7、C【解析】,∴,或.()當時,.∴.()當時,.∴.故選.8、D【解析】

由三視圖可知,該幾何體為棱長為2的正方體截去一個三棱錐,由正方體的體積減去三棱錐的體積求解.【詳解】根據(jù)三視圖,可知原幾何體如下圖所示,該幾何體為棱長為的正方體截去一個三棱錐,則該幾何體的體積為.故選:D.【點睛】本題考查了幾何體三視圖的應用問題以及幾何體體積的求法,關鍵是根據(jù)三視圖還原原來的空間幾何體,是中檔題.9、C【解析】

由可得,代入求解可得,則,進而利用誘導公式求解即可【詳解】由可得,即,所以,因為,所以,則,故選:C【點睛】本題考查垂直向量的應用,考查里利用誘導公式求三角函數(shù)值10、D【解析】

利用誘導公式先化簡,再利用差角的余弦公式化簡得解.【詳解】由題得原式=.故選D【點睛】本題主要考查誘導公式和差角的余弦公式化簡求值,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用古典概型的概率求解.【詳解】甲、乙兩人選擇交通工具總的選擇有種,他們選擇相同交通工具有3種情況,所以他們選擇相同交通工具的概率為.故答案為:.【點睛】本題考查古典概型,要用計數(shù)原理進行計數(shù),屬于基礎題.12、4【解析】

方程變?yōu)?,設,解關于的二次方程可求得?!驹斀狻?,則,即設,則,有或取得,,所以是第4項?!军c睛】發(fā)現(xiàn),原方程可通過換元,變?yōu)殛P于的一個二次方程。對于指數(shù)結構,,等,都可以通過換元變?yōu)槎涡问窖芯俊?3、【解析】

利用三角函數(shù)的定義可求.【詳解】由三角函數(shù)的定義可得,故.故答案為:.【點睛】本題考查三角函數(shù)的定義,注意根據(jù)正弦的定義構建關于的方程,本題屬于基礎題.14、②③【解析】

根據(jù),分當和兩種情況分類討論,每一類中利用正、余弦函數(shù)的單調(diào)性判斷,特別注意,當時,.【詳解】當時,在上是增函數(shù),因為,所以,因為在上是減函數(shù),且,所以,當時,且,因為在上是減函數(shù),所以,而,所以.故答案為:②③【點睛】本題主要考查了正弦函數(shù)與余弦函數(shù)的單調(diào)性在三角形中的應用,還考查了運算求解的能力,屬于中檔題.15、【解析】

對兩邊平方整理即可得解.【詳解】由可得:,整理得:所以【點睛】本題主要考查了同角三角函數(shù)基本關系及二倍角的正弦公式,考查觀察能力及轉(zhuǎn)化能力,屬于較易題.16、【解析】

根據(jù)誘導公式和特殊角的三角函數(shù)值可計算出結果.【詳解】由題意可得,原式.故答案為.【點睛】本題考查誘導公式和特殊三角函數(shù)值的計算,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】

(1)根據(jù)最高頂點間的距離求出周期得,根據(jù)對稱軸求出;(2)根據(jù)題意求出,結合誘導公式及和差公式求解.【詳解】解:(1)因的圖象上相鄰兩個最高點的距離為,∴的最小正周期,從而.又因的圖象關于直線對稱,∴.∵,∴,此時.(2)由(1)得,∴,由得,∴,∴.【點睛】此題考查根據(jù)三角函數(shù)圖像性質(zhì)求參數(shù)的值,結合誘導公式和差公式處理三角求值的問題.18、(1);(2)或.【解析】

(1)設出圓的一般方程,然后代入三個點的坐標,聯(lián)立方程組可解得;(2)討論直線的斜率是否存在,根據(jù)點到直線的距離和勾股定理列式可得直線的傾斜角.【詳解】(1)設圓的一般方程為,將點、、的坐標代入圓的方程得,解得,所以,圓的一般方程為,標準方程為;(2)設圓心到直線的距離為,則.①當直線的斜率不存在時,即直線到圓心的距離為,滿足題意,此時直線的傾斜角為;②當直線的斜率存在時,設直線的方程為,即,則圓心到直線的距離為,解得,此時,直線的傾斜角為.綜上所述,直線的傾斜角為或.【點睛】本題考查圓的方程的求解,同時也考查了利用直線截圓的弦長求直線的傾斜角,一般轉(zhuǎn)化為求圓心到直線的距離,并結合點到直線的距離公式以及勾股定理列等式求解,考查計算能力,屬中檔題.19、(1)見解析;(2).【解析】

(1)運用向量數(shù)量積的坐標表示,求出·;運用平面向量的坐標運算公式求出,然后求出模.(2)根據(jù)上(1)求出函數(shù)的解析式,配方,利用二次函數(shù)的性質(zhì)求出最小值.【詳解】(1)∵∴∴(2)∵∴∴【點睛】本題考查了平面向量數(shù)量積的坐標表示,以及平面向量的坐標加法運算公式.重點是二次函數(shù)求最小值問題.20、(1),(2)80人,13.25千步,(3)星期二【解析】

(1)根據(jù)統(tǒng)計圖統(tǒng)計出甲乙兩人合格的天數(shù),再計算全部獲獎概率;(2)根據(jù)頻率分布直方圖求出人數(shù)及平均步數(shù);(3)根據(jù)頻率分布直方圖計算出甲乙的步數(shù)從而判斷出星期幾.【詳解】(1)由統(tǒng)計圖可知甲乙兩人步數(shù)超過10000的有星期一、星期二、星期五、星期天設事件A為甲乙兩人兩天全部獲獎,則(2)由圖可知,解得所以該天運動步數(shù)不少于15000的人數(shù)為(人)全體職工在該天的平均步數(shù)為:(千步)(3)因為假設甲的步數(shù)為千步,乙的步數(shù)為千步由頻率分布直方圖可得:,解得,解得所以可得出的是星期二的頻率分布直方圖.【點睛】本題考查利用頻率分布直方圖來求平均數(shù)和概率,要注意計算的準確性,較簡單.21、(1)0.3,直方圖見解析;(2)121;(3).【解析】

(1)頻率分布直方圖中,小矩形的面積等于這一組的頻率,而頻率的和等于1,可求出分數(shù)在內(nèi)的頻率,即可求出矩形的高,畫出圖象即可;(2)同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,將中點值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分;(3)先計算、分數(shù)段的人數(shù),然后按照比例進行抽取,設從樣本中任取2人,至多有1人在分數(shù)段為事件,然后列出基本事件空間包含的基本事件,以及事件包含的基本事件,最后將包含事件的個數(shù)求出題目比值即可.【詳解】(1)分數(shù)在[120,130)內(nèi)的頻率為:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3,,補全后的直方圖如下:(2)平均分為:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由題意,[110,120)分數(shù)段的人數(shù)為:60×0.15=9人,[120,130)分數(shù)段的人數(shù)為:60×0.3=18人.∵用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,∴需

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論