上海市閘北第五中學高三數(shù)學理模擬試卷含解析_第1頁
上海市閘北第五中學高三數(shù)學理模擬試卷含解析_第2頁
上海市閘北第五中學高三數(shù)學理模擬試卷含解析_第3頁
上海市閘北第五中學高三數(shù)學理模擬試卷含解析_第4頁
上海市閘北第五中學高三數(shù)學理模擬試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市閘北第五中學高三數(shù)學理模擬試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知向量a=(3,4),b=(2,-1),如果向量a+b與-b垂直,則的值為

A.

B.

C.

D.2參考答案:答案:A2.甲、乙兩位同學在5次考試中的數(shù)學成績用莖葉圖表示如圖,中間一列的數(shù)字表示數(shù)學成績的十位數(shù)字,兩邊的數(shù)字表示數(shù)學成績的個位數(shù)字.若甲、乙兩人的平均成績分別是、,則下列說法正確的是()A.<,甲比乙成績穩(wěn)定 B.<,乙比甲成績穩(wěn)定C.>,甲比乙成績穩(wěn)定 D.>,乙比甲成績穩(wěn)定參考答案:B考點:莖葉圖;眾數(shù)、中位數(shù)、平均數(shù).專題:概率與統(tǒng)計.分析:由莖葉圖可得原式數(shù)據(jù),可得各自的平均值和方差,比較可得結(jié)論.解答:解:由題意可知甲的成績?yōu)椋?2,77,78,86,92,乙的成績?yōu)椋?8,88,88,90,91,∴=(72+77+78+86+92)=81,=(78+88+88+90+91)=87,=[(72﹣81)2+(77﹣81)2+(78﹣81)2+(86﹣81)2+(92﹣81)2]≈7.94,=[(78﹣87)2+(88﹣87)2+(88﹣87)2+(90﹣87)2+(91﹣87)2]≈5.20,∴<,且<,乙比甲成績穩(wěn)定.故選:B點評:本題考查莖葉圖,考查平均值和方差,屬基礎(chǔ)題3.已知x,y滿足約束條件則z=的最小值為(

)A.

B.

C.

4

D.

-參考答案:A4.函數(shù)在上的圖象大致為參考答案:C略5.設(shè){an}是等比數(shù)列,下列結(jié)論中正確的是() A.若a1+a2>0,則a2+a3>0 B.若a1+a3<0,則a1+a2<0 C.若0<a1<a2,則2a2<a1+a3 D.若a1<0,則(a2﹣a1)(a2﹣a3)>0 參考答案:C【考點】等比數(shù)列的通項公式. 【專題】轉(zhuǎn)化思想;等差數(shù)列與等比數(shù)列;不等式的解法及應(yīng)用. 【分析】設(shè)等比數(shù)列{an}的公比為q. A.由a1+a2>0,可得a1(1+q)>0,則當q<﹣1時,a2+a3=a1q(1+q),即可判斷出正誤; B.由a1+a3<0,可得a1(1+q2)<0,由a1<0.則a1+a2=a1(1+q),即可判斷出正誤; C.由0<a1<a2,可得0<a1<a1q,因此a1>0,q>1.作差2a2﹣(a1+a3)=﹣a1(1﹣q)2,即可判斷出正誤; D.由a1<0,則(a2﹣a1)(a2﹣a3)=q(1﹣q)2,即可判斷出正誤. 【解答】解:設(shè)等比數(shù)列{an}的公比為q. A.∵a1+a2>0,∴a1(1+q)>0,則當q<﹣1時,a2+a3=a1q(1+q)<0,因此不正確; B.∵a1+a3<0,∴a1(1+q2)<0,∴a1<0.則a1+a2=a1(1+q)可能大于等于0或小于0,因此不正確; C.∵0<a1<a2,∴0<a1<a1q,∴a1>0,q>1.則2a2﹣(a1+a3)=﹣a1(1﹣q)2<0,因此正確; D.∵a1<0,則(a2﹣a1)(a2﹣a3)=q(1﹣q)2可能相應(yīng)等于0或大于0,因此不正確. 故選:C. 【點評】本題考查了不等式的性質(zhì)、等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題. 6.計算得

A.

B.

C.

D.

參考答案:D7.已知某幾何體的三視圖如圖(正視圖的弧線是半圓),根據(jù)圖中標出數(shù)據(jù),這個幾何體的體積是(

)A.

B.

C.

D.參考答案:A

8.已知i是虛數(shù)單位,是全體復(fù)數(shù)構(gòu)成的集合,若映射R滿足:對任意,以及任意R,都有,則稱映射具有性質(zhì).給出如下映射:①R,,iR;②R,,iR;③R,,iR;其中,具有性質(zhì)的映射的序號為A.①②

B.①③

C.②③

D.①②③參考答案:B9.若實數(shù)x、y滿足,則的取值范圍是

A.

B.

C.

D.參考答案:D略10.在邊長為的等邊中,為邊上一動點,則的取值范圍是.參考答案:略二、填空題:本大題共7小題,每小題4分,共28分11.若拋物線的焦點與雙曲線的右焦點重合,則

.參考答案:4略12.設(shè)命題:實數(shù)滿足,其中;命題:實數(shù)滿足且的必要不充分條件,則實數(shù)的取值范圍是

.參考答案:(-∞,-4】略13.若實數(shù)x,y滿足,如果目標函數(shù)的最小值為,則實數(shù)m=______.參考答案:8略14.已知數(shù)列{an}滿足,,則

.參考答案:由,同時除以可得.即是以為首項,為公差的等差數(shù)列.所以,即.故答案為:.

15.已知2a=5b=,則=___參考答案:216.如圖,△AOB為等腰直角三角形,OA=1,OC為斜邊AB的高,點P在射線OC上,則?的最小值為.參考答案:【考點】平面向量數(shù)量積的運算.【分析】如圖所示,,設(shè)=t≥0.可得?=?=t2﹣t=﹣,利用二次函數(shù)的單調(diào)性即可得出.【解答】解:如圖所示,,設(shè)=t≥0.∴?=?=﹣=t2﹣t=﹣.當t=時取等號,∴?的最小值為﹣.故答案為:.17.已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”.給出下列四個集合:①M={(x,y)|y=};

②M={(x,y)|y=sinx+1};③M={(x,y)|y=log2x};

④M={(x,y)|y=ex﹣2}.其中是“垂直對點集”的序號是.參考答案:②④考點: 函數(shù)的圖象.

專題: 新定義;數(shù)形結(jié)合;函數(shù)的性質(zhì)及應(yīng)用.分析: 利用數(shù)形結(jié)合的方法解決,根據(jù)題意,若集合M={(x,y)|y=f(x)}是“垂直對點集”,就是在函數(shù)圖象上任取一點A,得直線OA,過原點與OA垂直的直線OB,若OB總與函數(shù)圖象相交即可.解答: 解:由題意,若集合M={(x,y)|y=f(x)}滿足,對于任意A(x1,y1)∈M,存在B(x2,y2)∈M,使得x1x2+y1y2=0成立,因此.所以,若M是“垂直對點集”,那么在M圖象上任取一點A,過原點與直線OA垂直的直線OB總與函數(shù)圖象相交于點B.對于①M={(x,y)|y=},其圖象是過一、三象限的雙曲線,做第一象限的角平分線與雙曲線交于點A,與OA垂直的直線是二、四象限的角平分線,顯然與雙曲線沒有公共點.所以對于點A,在圖象上不存在點B,使得OB⊥OA,所以①不符合題意;對于②M={(x,y)|y=sinx+1},畫出函數(shù)圖象,在圖象上任取一點A,連OA,過原點作直線OA的垂線OB,因為y=sinx+1的圖象沿x軸向左向右無限延展,且與x軸相切,因此直線OB總會與y=sinx+1的圖象相交.所以M={(x,y)|y=sinx+1}是“垂直對點集”,故②符合;對于③M={(x,y)|y=log2x},對于函數(shù)y=log2x,過原點做出其圖象的切線OT(切點T在第一象限),則過切點T做OT的垂線,則垂線必不過原點,所以對切點T,不存在點M,使得OM⊥OT,所以M={(x,y)|y=log2x}不是“垂直對點集”;故③不符合題意;對于④M={(x,y)|y=ex﹣2},其圖象過點(0,﹣1),且向右向上無限延展,向左向下無限延展,所以,據(jù)圖可知,在圖象上任取一點A,連OA,過原點作OA的垂線OB必與y=ex﹣2的圖象相交,即一定存在點B,使得OB⊥OA成立,故M={(x,y)|y=ex﹣2}是“垂直對點集”.故答案為:②④點評: 這種類型的題目應(yīng)先弄清所給信息要表達的幾何意義,將其轉(zhuǎn)化為一個幾何問題,然后借助于函數(shù)的圖象解決.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.現(xiàn)有一組互不相同且從小到大排列的數(shù)據(jù),其中.記,,作函數(shù),使其圖象為逐點依次連接點的折線.(Ⅰ)求和的值;(Ⅱ)設(shè)直線的斜率為,判斷的大小關(guān)系;(Ⅲ)證明:當時,.參考答案:(Ⅰ)解:,

………………2分;

………………4分(Ⅱ)解:,.

………………6分因為,所以.

………………8分(Ⅲ)證:由于的圖象是連接各點的折線,要證明,只需證明.…………9分事實上,當時,.下面證明.法一:對任何,………………10分……11分…………12分所以.…………13分法二:對任何,當時,;………10分當時,綜上,.

………13分略19.(12分)曲線C是中心在原點,焦點為的雙曲線的右支,已知它的一條漸近線方程是.(1)求曲線C的方程;(2)已知點,若直線與曲線C交于不同于點E的P、R兩點,且,求證:直線過一個定點,并求出定點的坐標.

參考答案:解析:(1)設(shè)C:

(≥,>0,>0)

--------------4分(2)①當不垂直x軸時,設(shè):,,

由∵

-------------------6分由=化簡得:

-------------------9分(此時過點E,不合題意,舍去)--------------10分.-------------------11分②當垂直x軸時,∵又.----------------------12分20.已知函數(shù),.(1)當時,若關(guān)于x的不等式恒成立,求a的取值范圍;(2)當時,證明:.參考答案:(1)由,得.整理,得恒成立,即.令.則.∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.∴函數(shù)的最小值為.∴,即.∴a的取值范圍是.(2)∵為數(shù)列的前n項和,為數(shù)列的前n項和.∴只需證明即可.由(1),當時,有,即.令,即得.∴.現(xiàn)證明,即.現(xiàn)證明.構(gòu)造函數(shù),則.∴函數(shù)在[1,+∞)上是增函數(shù),即.∴當時,有,即成立.令,則式成立.綜上,得.對數(shù)列,,分別求前n項和,得.21.(本小題滿分10分)選修4-1:幾何證明選講如圖,為圓的直徑,為圓的切線,點為圓上不同于的一點,為的平分線,且分別與交于,與圓交于,與交于,連接.(1)求證:平分;(2)求證:.參考答案:(1)證明見解析;(2)證明見解析.考點:1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論