福建省福州市鼓樓區(qū)福州第一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
福建省福州市鼓樓區(qū)福州第一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
福建省福州市鼓樓區(qū)福州第一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
福建省福州市鼓樓區(qū)福州第一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
福建省福州市鼓樓區(qū)福州第一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省福州市鼓樓區(qū)福州第一中學(xué)2024學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)2.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為相反數(shù)的點是A.點A和點C B.點B和點DC.點A和點D D.點B和點C3.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=64.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.5.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標系中的大致圖象是()A. B. C. D.6.下列運算正確的是()A.a(chǎn)?a2=a2 B.(ab)2=ab C.3﹣1= D.7.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數(shù)是()A.60° B.35° C.30.5° D.30°8.下列說法正確的是()A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數(shù)據(jù)1,a,4,4,9,它的平均數(shù)是4,則這組數(shù)據(jù)的方差是7.6C.12名同學(xué)中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是9.在對某社會機構(gòu)的調(diào)查中收集到以下數(shù)據(jù),你認為最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是()年齡13141525283035其他人數(shù)30533171220923A.平均數(shù) B.眾數(shù) C.方差 D.標準差10.如圖,若數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),用圓規(guī)在數(shù)軸上畫點C,則與點C對應(yīng)的實數(shù)是()A.2 B.3 C.4 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.當(dāng)﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.12.如圖,折疊長方形紙片ABCD,先折出對角線BD,再將AD折疊到BD上,得到折痕DE,點A的對應(yīng)點是點F,若AB=8,BC=6,則AE的長為_____.13.如圖,在直角坐標系中,正方形的中心在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(shù)(k>0)的圖象上與正方形的一個交點.若圖中陰影部分的面積等于9,則這個反比例函數(shù)的解析式為▲.14.如圖,已知平行四邊形ABCD,E是邊BC的中點,聯(lián)結(jié)DE并延長,與AB的延長線交于點F.設(shè)=,=,那么向量用向量、表示為_____.15.若xay與3x2yb是同類項,則ab的值為_____.16.定義:在平面直角坐標系xOy中,把從點P出發(fā)沿縱或橫方向到達點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為1,即PS+SQ=1或PT+TQ=1.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個小區(qū)的坐標分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標為_____.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.18.(8分)現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.求y與x之間的函數(shù)關(guān)系式;設(shè)種植的總成本為w元,①求w與x之間的函數(shù)關(guān)系式;②若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.19.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.求證:DE是⊙O的切線;若AD=16,DE=10,求BC的長.20.(8分)如圖,在平面直角坐標系中,拋物線C1經(jīng)過點A(﹣4,0)、B(﹣1,0),其頂點為.(1)求拋物線C1的表達式;(2)將拋物線C1繞點B旋轉(zhuǎn)180°,得到拋物線C2,求拋物線C2的表達式;(3)再將拋物線C2沿x軸向右平移得到拋物線C3,設(shè)拋物線C3與x軸分別交于點E、F(E在F左側(cè)),頂點為G,連接AG、DF、AD、GF,若四邊形ADFG為矩形,求點E的坐標.21.(8分)如圖,分別延長?ABCD的邊到,使,連接EF,分別交于,連結(jié)求證:.22.(10分)某數(shù)學(xué)教師為了解所教班級學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對該班部分學(xué)生進行了一學(xué)期的跟蹤調(diào)查,將調(diào)查結(jié)果分為四類并給出相應(yīng)分數(shù),A:很好,95分;B:較好75分;C:一般,60分;D:較差,30分.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:(Ⅰ)該教師調(diào)查的總?cè)藬?shù)為,圖②中的m值為;(Ⅱ)求樣本中分數(shù)值的平均數(shù)、眾數(shù)和中位數(shù).23.(12分)解不等式組:,并將它的解集在數(shù)軸上表示出來.24.如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字2,3、1.(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為;(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結(jié)果.【題目詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點A的坐標為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點C的坐標為(,﹣1).故選A.【題目點撥】本題考查了正方形的性質(zhì)、坐標與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對應(yīng)邊相等是解決問題的關(guān)鍵.2、C【解題分析】

根據(jù)相反數(shù)的定義進行解答即可.【題目詳解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根據(jù)相反數(shù)和為0的特點,可確定點A和點D表示互為相反數(shù)的點.故答案為C.【題目點撥】本題考查了相反數(shù)的定義,掌握相反數(shù)和為0是解答本題的關(guān)鍵.3、D【解題分析】

本題應(yīng)對原方程進行因式分解,得出(x-6)(x+1)=1,然后根據(jù)“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【題目詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【題目點撥】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的提點靈活選用合適的方法.本題運用的是因式分解法.4、D【解題分析】

主視圖是從幾何體的正面看,主視圖是三角形的一定是一個錐體,是長方形的一定是柱體,由此分析可得答案.【題目詳解】解:主視圖是三角形的一定是一個錐體,只有D是錐體.故選D.【題目點撥】此題主要考查了幾何體的三視圖,主要考查同學(xué)們的空間想象能力.5、D【解題分析】

根據(jù)拋物線和直線的關(guān)系分析.【題目詳解】由拋物線圖像可知,所以反比例函數(shù)應(yīng)在二、四象限,一次函數(shù)過原點,應(yīng)在二、四象限.故選D【題目點撥】考核知識點:反比例函數(shù)圖象.6、C【解題分析】

根據(jù)同底數(shù)冪的乘法法則對A進行判斷;根據(jù)積的乘方對B進行判斷;根據(jù)負整數(shù)指數(shù)冪的意義對C進行判斷;根據(jù)二次根式的加減法對D進行判斷.【題目詳解】解:A、原式=a3,所以A選項錯誤;B、原式=a2b2,所以B選項錯誤;C、原式=,所以C選項正確;D、原式=2,所以D選項錯誤.故選:C.【題目點撥】本題考查了二次根式的加減法:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.也考查了整式的運算.7、D【解題分析】

根據(jù)圓心角、弧、弦的關(guān)系定理得到∠AOB=∠AOC,再根據(jù)圓周角定理即可解答.【題目詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【題目點撥】此題考查了圓心角、弧、弦的關(guān)系定理,解題關(guān)鍵在于利用好圓周角定理.8、B【解題分析】

分別用方差、全面調(diào)查與抽樣調(diào)查、隨機事件及概率的知識逐一進行判斷即可得到答案.【題目詳解】A.某工廠質(zhì)檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調(diào)查的方法,故本選項錯誤;B.根據(jù)平均數(shù)是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學(xué)的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.【題目點撥】本題考查的知識點是概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件,解題的關(guān)鍵是熟練的掌握概率公式、全面調(diào)查與抽樣調(diào)查、方差及隨機事件.9、B【解題分析】分析:根據(jù)平均數(shù)的意義,眾數(shù)的意義,方差的意義進行選擇.詳解:由于14歲的人數(shù)是533人,影響該機構(gòu)年齡特征,因此,最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是眾數(shù).故選B.點睛:本題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當(dāng)?shù)倪\用.10、B【解題分析】

由數(shù)軸上的點A、B分別與實數(shù)﹣1,1對應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點C對應(yīng)的實數(shù).【題目詳解】∵數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應(yīng)的實數(shù)是:1+2=3.故選B.【題目點撥】本題考查了實數(shù)與數(shù)軸,熟記實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系是解決本題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、-23≤y≤2【解題分析】

先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當(dāng)x=-3時y最大,把x=2時y最小代入即可得出結(jié)論.【題目詳解】解:∵a=-1,

∴拋物線的開口向下,故有最大值,

∵對稱軸x=-3,

∴當(dāng)x=-3時y最大為2,

當(dāng)x=2時y最小為-23,

∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【題目點撥】本題考查二次函數(shù)的性質(zhì),掌握拋物線的開口方向、對稱軸以及增減性是解題關(guān)鍵.12、3【解題分析】

先利用勾股定理求出BD,再求出DF、BF,設(shè)AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解決問題.【題目詳解】∵四邊形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.設(shè)AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案為:3.【題目點撥】本題考查了矩形的性質(zhì)、勾股定理等知識,解題時,我們常常設(shè)要求的線段長為x,然后根據(jù)折疊和軸對稱的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當(dāng)?shù)闹苯侨切危\用勾股定理列出方程求出答案.13、.【解題分析】待定系數(shù)法,曲線上點的坐標與方程的關(guān)系,反比例函數(shù)圖象的對稱性,正方形的性質(zhì).【分析】由反比例函數(shù)的對稱性可知陰影部分的面積和正好為小正方形面積的,設(shè)小正方形的邊長為b,圖中陰影部分的面積等于9可求出b的值,從而可得出直線AB的表達式,再根據(jù)點P(2a,a)在直線AB上可求出a的值,從而得出反比例函數(shù)的解析式:∵反比例函數(shù)的圖象關(guān)于原點對稱,∴陰影部分的面積和正好為小正方形的面積.設(shè)正方形的邊長為b,則b2=9,解得b=3.∵正方形的中心在原點O,∴直線AB的解析式為:x=2.∵點P(2a,a)在直線AB上,∴2a=2,解得a=3.∴P(2,3).∵點P在反比例函數(shù)(k>0)的圖象上,∴k=2×3=2.∴此反比例函數(shù)的解析式為:.14、+2【解題分析】

根據(jù)平行四邊形的判定與性質(zhì)得到四邊形DBFC是平行四邊形,則DC=BF,故AF=2AB=2DC,結(jié)合三角形法則進行解答.【題目詳解】如圖,連接BD,F(xiàn)C,∵四邊形ABCD是平行四邊形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是邊BC的中點,∴,∴EC=BE,即點E是DF的中點,∴四邊形DBFC是平行四邊形,∴DC=BF,故AF=2AB=2DC,∴=+=+2=+2.故答案是:+2.【題目點撥】此題考查了平面向量的知識、相似三角形的判定與性質(zhì)以及平行四邊形的性質(zhì).注意掌握三角形法則的應(yīng)用是關(guān)鍵.15、2【解題分析】試題解析:∵xay與3x2yb是同類項,∴a=2,b=1,則ab=2.16、(1,﹣2).【解題分析】

若設(shè)M(x,y),則由題目中對“實際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).三、解答題(共8題,共72分)17、(1)證明見解析;(2).【解題分析】

(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;

(2)設(shè)圓的半徑為r,利用銳角三角函數(shù)定義求出AB的長,再利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到結(jié)果.【題目詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設(shè)圓的半徑為,在中,,根據(jù)勾股定理得:,,在中,,,根據(jù)勾股定理得:,在中,,即,解得:.【題目點撥】此題考查了切線的判定與性質(zhì),以及勾股定理,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.18、(1);(2)①;②【解題分析】

(1)先求出種植C種樹苗的人數(shù),根據(jù)現(xiàn)種植A、B、C三種樹苗一共480棵,可以列出等量關(guān)系,解出y與x之間的關(guān)系;(2)①分別求出種植A,B,C三種樹苗的成本,然后相加即可;②求出種植C種樹苗工人的人數(shù),然后用種植C種樹苗工人的人數(shù)÷總?cè)藬?shù)即可求出概率.【題目詳解】解:(1)設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名,則種植C種樹苗的人數(shù)為(80-x-y)人,根據(jù)題意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②種植的總成本為5600元時,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即種植A種樹苗的工人為10名,種植B種樹苗的工人為50名,種植B種樹苗的工人為:80-10-50=20名.采訪到種植C種樹苗工人的概率為:=.【題目點撥】本題主要考查了一次函數(shù)的實際問題,以及概率的求法,能夠?qū)嶋H問題轉(zhuǎn)化成數(shù)學(xué)模型是解答此題的關(guān)鍵.19、(1)證明見解析;(2)15.【解題分析】

(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.

(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題.【題目詳解】(1)證明:連結(jié)OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切線;(2)連結(jié)CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直徑,∠ACB=90°.∴EC是⊙O的切線.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【題目點撥】考查切線的性質(zhì)、勾股定理、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活綜合運用所學(xué)知識解決問題.20、(1)y;(2);(3)E(,0).【解題分析】

(1)根據(jù)拋物線C1的頂點坐標可設(shè)頂點式將點B坐標代入求解即可;(2)由拋物線C1繞點B旋轉(zhuǎn)180°得到拋物線C2知拋物線C2的頂點坐標,可設(shè)拋物線C2的頂點式,根據(jù)旋轉(zhuǎn)后拋物線C2開口朝下,且形狀不變即可確定其表達式;(3)作GK⊥x軸于G,DH⊥AB于H,由題意GK=DH=3,AH=HB=EK=KF,結(jié)合矩形的性質(zhì)利用兩組對應(yīng)角分別相等的兩個三角形相似可證△AGK∽△GFK,由其對應(yīng)線段成比例的性質(zhì)可知AK長,結(jié)合A、B點坐標可知BK、BE、OE長,可得點E坐標.【題目詳解】解:(1)∵拋物線C1的頂點為,∴可設(shè)拋物線C1的表達式為y,將B(﹣1,0)代入拋物線解析式得:,∴,解得:a,∴拋物線C1的表達式為y,即y.(2)設(shè)拋物線C2的頂點坐標為∵拋物線C1繞點B旋轉(zhuǎn)180°,得到拋物線C2,即點與點關(guān)于點B(﹣1,0)對稱∴拋物線C2的頂點坐標為()可設(shè)拋物線C2的表達式為y∵拋物線C2開口朝下,且形狀不變∴拋物線C2的表達式為y,即.(3)如圖,作GK⊥x軸于G,DH⊥AB于H.由題意GK=DH=3,AH=HB=EK=KF,∵四邊形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴,∴,∴AK=6,,∴BE=BK﹣EK=3,∴OE,∴E(,0).【題目點撥】本題考查了二次函數(shù)與幾何的綜合,涉及了待定系數(shù)法求二次函數(shù)解析式、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、旋轉(zhuǎn)變換的性質(zhì),靈活的利用待定系數(shù)法求二次函數(shù)解析式是解前兩問的關(guān)鍵,熟練掌握相似三角形的判定與性質(zhì)是解(3)的關(guān)鍵.21、證明見解析【解題分析】分析:根據(jù)平行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論