版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆山西省靜樂縣第一中學數(shù)學高一上期末經(jīng)典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.已知,則等于()A.1 B.2C.3 D.62.若,,則是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.設集合,.若,則()A. B.C. D.4.已知定義在R上的函數(shù)是奇函數(shù)且滿足,,數(shù)列滿足,且,(其中為的前n項和).則A.3 B.C. D.25.已知關于的方程在區(qū)間上存在兩個不同的實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.6.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積為()A. B.C. D.7.已知函數(shù),,若恰有2個零點,則實數(shù)a的取值范圍是()A. B.C. D.8.在平面直角坐標系中,以為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,則的最小值為A. B.C. D.9.設,,,則的大小關系為A. B.C. D.10.函數(shù)f(x)=tan的單調(diào)遞增區(qū)間是()A.(k∈Z) B.(k∈Z)C.(k∈Z) D.(k∈Z)11.對于①,②,③,④,⑤,⑥,則為第二象限角的充要條件是()A.①③ B.③⑤C.①⑥ D.②④12.過原點和直線與的交點的直線的方程為()A. B.C. D.二、填空題(本大題共4小題,共20分)13.當時,函數(shù)取得最大值,則_______________14.=_______________.15.由直線上的任意一個點向圓引切線,則切線長的最小值為________.16.已知表示不超過實數(shù)的最大整數(shù),如,,為取整函數(shù),是函數(shù)的零點,則__________三、解答題(本大題共6小題,共70分)17.用水清洗一堆蔬菜上的農(nóng)藥,設用個單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為,且已知用個單位量的水清洗一次,可洗掉本次清洗前殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上(1)根據(jù)題意,直接寫出函數(shù)應該滿足的條件和具有的性質(zhì);(2)設,現(xiàn)用()個單位量的水可以清洗一次,也可以把水平均分成份后清洗兩次,問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較少,說明理由;(3)若滿足題意,直接寫出一組參數(shù)的值18.我們知道,函數(shù)的圖象關于坐標原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù).若函數(shù)的圖象關于點對稱,且當時,.(1)求的值;(2)設函數(shù).(i)證明函數(shù)的圖象關于點對稱;(ii)若對任意,總存在,使得成立,求的取值范圍.19.已知函數(shù),,且.(1)求實數(shù)m的值,并求函數(shù)有3個不同的零點時實數(shù)b的取值范圍;(2)若函數(shù)在區(qū)間上為增函數(shù),求實數(shù)a取值范圍.20.已知函數(shù),,且在上的最小值為0.(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)求的最大值以及取得最大值時x的取值集合.21.已知函數(shù)(常數(shù)).(1)當時,用定義證明在區(qū)間上是嚴格增函數(shù);(2)根據(jù)的不同取值,判斷函數(shù)的奇偶性,并說明理由;(3)令,設在區(qū)間上的最小值為,求的表達式.22.黔東南州某銀行柜臺異地跨行轉賬手續(xù)費的收費標準為;轉賬不超過200元,每筆收1元:轉賬不超過10000元,每筆收轉賬金額的0.5%:轉賬超過10000元時每筆收50元,張黔需要在該銀行柜臺進行一筆異地跨行轉賬的業(yè)務.(1)若張黔轉賬的金額為x元,手續(xù)費為y元,請將y表示為x的函數(shù):(2)若張黔轉賬的金額為10t-3996元,他支付的于練費大于5元且小了50元,求t的取值范圍.
參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】利用對數(shù)和指數(shù)互化,可得,,再利用即可求解.【詳解】由得:,,所以,故選:A2、B【解析】根據(jù),可判斷可能在的象限,根據(jù),可判斷可能在的象限,綜合分析,即可得答案.【詳解】由,可得的終邊在第一象限或第二象限或與y軸正半軸重合,由,可得的終邊在第二象限或第四象限,因為,同時成立,所以是第二象限角.故選:B3、C【解析】∵集合,,∴是方程的解,即∴∴,故選C4、A【解析】由奇函數(shù)滿足可知該函數(shù)是周期為的奇函數(shù),由遞推關系可得:,兩式做差有:,即,即數(shù)列構成首項為,公比為的等比數(shù)列,故:,綜上有:,,則:.本題選擇A選項.5、C【解析】本題首先可根據(jù)方程存在兩個不同的實數(shù)根得出、,然后設,分為、兩種情況進行討論,最后根據(jù)對稱軸的相關性質(zhì)以及的大小即可得出結果.【詳解】因為方程存在兩個不同的實數(shù)根,所以,,解得或,設,對稱軸為,當時,因為兩個不同實數(shù)根在區(qū)間上,所以,即,解得,當時,因為兩個不同的實數(shù)根在區(qū)間上,所以,即,解得,綜上所述,實數(shù)的取值范圍是,故選:C.6、A【解析】正四棱錐P-ABCD的外接球的球心在它的高上,記為O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面積,故選A.考點:球的體積和表面積7、B【解析】利用數(shù)形結合的方法,作出函數(shù)的圖象,簡單判斷即可.【詳解】依題意,函數(shù)的圖象與直線有兩個交點,作出函數(shù)圖象如下圖所示,由圖可知,要使函數(shù)的圖象與直線有兩個交點,則,即.故選:B.【點睛】本題考查函數(shù)零點問題,掌握三種等價形式:函數(shù)零點個數(shù)等價于方程根的個數(shù)等價于兩個函數(shù)圖象交點個數(shù),屬基礎題.8、D【解析】因為為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,設切點為,所以,設,則,,故選D.考點:1、圓的幾何性質(zhì);2、數(shù)形結合思想及三角函數(shù)求最值【方法點睛】本題主要考查圓的幾何性質(zhì)、數(shù)形結合思想及三角函數(shù)求最值,屬于難題.求最值的常見方法有①配方法:若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)求值域,其關鍵在于正確化成完全平方式,并且一定要先確定其定義域;②三角函數(shù)法:將問題轉化為三角函數(shù),利用三角函數(shù)的有界性求最值;③不等式法:借助于基本不等式求函數(shù)的值域,用不等式法求值域時,要注意基本不等式的使用條件“一正、二定、三相等”;④單調(diào)性法:首先確定函數(shù)的定義域,然后準確地找出其單調(diào)區(qū)間,最后再根據(jù)其單調(diào)性求凼數(shù)的值域,⑤圖像法:畫出函數(shù)圖像,根據(jù)圖像的最高和最低點求最值,本題主要應用方法②求的最小值的9、B【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性判斷出的取值范圍,從而可得結果.【詳解】,,,,故選B.【點睛】本題主要考查對數(shù)函數(shù)的性質(zhì)、指數(shù)函數(shù)的單調(diào)性及比較大小問題,屬于難題.解答比較大小問題,常見思路有兩個:一是判斷出各個數(shù)值所在區(qū)間(一般是看三個區(qū)間);二是利用函數(shù)的單調(diào)性直接解答;數(shù)值比較多的比大小問題也可以兩種方法綜合應用.10、B【解析】運用整體代入法,結合正切函數(shù)的單調(diào)區(qū)間可得選項.【詳解】由kπ-<2x-<kπ+(k∈Z),得<x<(k∈Z),所以函數(shù)f(x)=tan的單調(diào)遞增區(qū)間為(k∈Z).故選:B.【點睛】本題考查正切函數(shù)的單調(diào)性,屬于基礎題.11、C【解析】利用三角函數(shù)值在各個象限的符號判斷.【詳解】為第二象限角的充要條件是:①,④,⑥,故選:C.12、C【解析】先求出兩直線的交點,從而可得所求的直線方程.【詳解】由可得,故過原點和交點的直線為即,故選:C.二、填空題(本大題共4小題,共20分)13、【解析】利用三角恒等變換化簡函數(shù),根據(jù)正弦型函數(shù)的最值解得,利用誘導公式求解即可.【詳解】解析:當時,取得最大值(其中),∴,即,∴故答案為:-3.14、【解析】解:15、【解析】利用切線和點到圓心的距離關系即可得到結果.【詳解】圓心坐標,半徑要使切線長最小,則只需要點到圓心的距離最小,此時最小值為圓心到直線的距離,此時,故答案為:【點睛】本題考查了直線與圓的位置關系,同時考查了點到直線的距離公式,屬于基礎題.16、2【解析】由于,所以,故.【點睛】本題主要考查對新定義概念的理解,考查利用二分法判斷函數(shù)零點的大概位置.首先研究函數(shù),令無法求解出對應的零點,考慮用二分法來判斷,即計算,則零點在區(qū)間上.再結合取整函數(shù)的定義,可求出的值.三、解答題(本大題共6小題,共70分)17、(1)答案見解析(2)答案不唯一,具體見解析(3)的值依次為(答案不唯一)【解析】(1)根據(jù)題意直接寫出定義域,值域,,單調(diào)性;(2)分別計算2種方案完成后蔬菜農(nóng)藥殘留,做差后分類討論比較大小即可得出答案;(3)根據(jù)(1)中函數(shù)的性質(zhì),直接寫出一組即可.【小問1詳解】滿足的條件和性質(zhì)如下:;定義域為;;;在區(qū)間上單調(diào)遞減【小問2詳解】設清洗前殘留的農(nóng)藥量為,若清洗一次,設清洗后蔬菜上殘留的農(nóng)藥量為,則,則若把水平均分成份后清洗兩次,設第一次清洗后蔬菜上殘留的農(nóng)藥量為,則設第二次清洗后蔬菜上殘留的農(nóng)藥量為,,比較與的大?。孩佼?,即時,,即,由不等式的性質(zhì)可得,所以把水平均分成份后清洗兩次蔬菜上殘留的農(nóng)藥量比較少;②當,即時,,兩種方案清洗后蔬菜上殘留的農(nóng)藥量一樣多;③當,即時,由不等式的性質(zhì)可得,所以清洗一次后蔬菜上殘留的農(nóng)藥量比較少【小問3詳解】參數(shù)的值依次為.(答案不唯一)18、(1);(2)(i)證明見解析;(ii).【解析】(1)根據(jù)題意∵為奇函數(shù),∴,令x=1即可求出;(2)(i)驗證為奇函數(shù)即可;(ii))求出在區(qū)間上的值域為A,記在區(qū)間上的值域為,則.由此問題轉化為討論f(x)的值域B,分,,三種情況討論即可.【小問1詳解】∵為奇函數(shù),∴,得,則令,得.【小問2詳解】(i),∵為奇函數(shù),∴為奇函數(shù),∴函數(shù)的圖象關于點對稱.(ii)在區(qū)間上單調(diào)遞增,∴在區(qū)間上的值域為,記在區(qū)間上的值域為,由對,總,使得成立知,①當時,上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,∴在上單調(diào)遞增,只需即可,得,∴滿足題意;②當時,在上單調(diào)遞減,在上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,在上單調(diào)遞減,∴在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,∴或,當時,,,∴滿足題意;③當時,在上單調(diào)遞減,由對稱性知,在上單調(diào)遞減,∴在上單調(diào)遞減,只需即可,得,∴滿足題意.綜上所述,的取值范圍為.19、(1)..(2)【解析】(1)由求得,作出函數(shù)圖象可知的范圍;(2)由函數(shù)圖象可知區(qū)間所屬范圍,列不等式示得結論【詳解】(1)因為,所以.函數(shù)的大致圖象如圖所示令,得.故有3個不同的零點.即方程有3個不同的實根.由圖可知.(2)由圖象可知,函數(shù)在區(qū)間和上分別單調(diào)遞增.因為,且函數(shù)在區(qū)間上為增函數(shù),所以可得,解得.所以實數(shù)a的取值范圍為.【點睛】本題考查由函數(shù)值求參數(shù),考查分段函數(shù)的圖象與性質(zhì).考查零點個數(shù)問題與轉化思想.屬于中檔題20、(1)最小正周期為,(2)3,【解析】(1)直接利用周期公式可求出周期,由可求出增區(qū)間,(2)由得,從而可求出最小值,則可求出的值,進而可求出函數(shù)解析式,則可求出最大值以及取得最大值時x的取值集合【小問1詳解】的最小正周期為.令,,解得,.所以的單調(diào)遞增區(qū)間為.【小問2詳解】當時,.,解得.所以.當,,即,時,取得最大值,且最大值為3.故的最大值為3,取得最大值時x的取值集合為21、(1)證明見解析(2)當時,奇函數(shù);當時,非奇非偶函數(shù),理由見解析.(3)【解析】(1)當時,得到函數(shù),利用函數(shù)單調(diào)性的定義,即可作出證明;(2)分和兩種情況,結合函數(shù)的奇偶性的定義,即可得出結論.(3)根據(jù)正負性,結合具體類型的函數(shù)的單調(diào)性,進行分類討論可以求出的表達式;【小問1詳解】當時,函數(shù),設且,則,因為,可得又由,可得,所以所以,即,所以函數(shù)是上是嚴格增函數(shù).【小問2詳解】由函數(shù)的定義域為關于原點對稱,當時,函數(shù),可得,此時函數(shù)為奇函數(shù);當時,,此時且,所以時,函數(shù)為非奇非偶函數(shù).【小問3詳解】,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 真空電子器件焊接工藝創(chuàng)新趨勢分析報告
- 吉林師范大學博達學院《結構力學(Ⅰ)》2024-2025學年第一學期期末試卷
- 青島航空科技職業(yè)學院《機器人傳感器及其信息融合技術》2024-2025學年第一學期期末試卷
- 蚌埠工商學院《俄語數(shù)學》2024-2025學年第一學期期末試卷
- 江蘇警官學院《乒乓球V》2024-2025學年第一學期期末試卷
- 陜西國防工業(yè)職業(yè)技術學院《運動生物力學(康復)》2024-2025學年第一學期期末試卷
- 湖北美術學院《網(wǎng)絡與新媒體概論》2024-2025學年第一學期期末試卷
- 武漢工貿(mào)職業(yè)學院《linux》2024-2025學年第一學期期末試卷
- 二零二五版數(shù)據(jù)中心基本建設貸款合同
- 二零二五年度旅游節(jié)慶活動場地租賃合同
- 幕墻作業(yè)安全技術交底
- 中醫(yī)耳針技術
- 混凝土板底疏松修補方案
- 小型文化傳媒公司財務管理制度
- 山東省第二屆化學分析檢驗人員行業(yè)職業(yè)技能競賽理論試題庫資料(含答案)
- 人教版數(shù)學一年級(上冊)知識點全
- 孕產(chǎn)婦健康管理服務規(guī)范
- AQ 1097-2014 井工煤礦安全設施設計編制導則(正式版)
- NBT 47013.13-2015 承壓設備無損檢測 第13部分:脈沖渦流檢測
- 2024年三亞市海棠區(qū)營商環(huán)境建設局一級科員招錄1人《行政職業(yè)能力測驗》高頻考點、難點(含詳細答案)
- 2024-2030年中國培南類抗菌藥物行業(yè)市場運行態(tài)勢及發(fā)展戰(zhàn)略研究報告
評論
0/150
提交評論