




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省宣城市第十三中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線與直線平行,則()A. B.C. D.2.已知過點(diǎn)的直線l與圓相交于A,B兩點(diǎn),則的取值范圍是()A. B.C. D.3.甲組數(shù)據(jù)為:5,12,16,21,25,37,乙組數(shù)據(jù)為:1,6,14,18,38,39,則甲、乙的平均數(shù)、極差及中位數(shù)相同的是()A.極差 B.平均數(shù)C.中位數(shù) D.都不相同4.日常飲用水通常都是經(jīng)過凈化的,隨若水純凈度的提高,所需凈化費(fèi)用不斷增加.已知水凈化到純凈度為時(shí)所需費(fèi)用單位:元為那么凈化到純凈度為時(shí)所需凈化費(fèi)用的瞬時(shí)變化率是()元/t.A. B.C. D.5.甲、乙、丙、丁四位同學(xué)一起去找老師詢問成語(yǔ)競(jìng)賽的成績(jī).老師說:你們四人中有位優(yōu)秀,位良好,我現(xiàn)在給甲看乙、丙的成績(jī),給乙看丙的成績(jī),給丁看甲的成績(jī).看后甲對(duì)大家說:我還是不知道我的成績(jī).根據(jù)以上信息,則()A.乙、丁可以知道自己的成績(jī) B.乙、丁可以知道對(duì)方的成績(jī)C.乙可以知道四人的成績(jī) D.丁可以知道四人的成績(jī)6.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.7.阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德并稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對(duì)圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓就是他的研究成果之一.指的是:已知?jiǎng)狱c(diǎn)與兩定點(diǎn)的距離之比,那么點(diǎn)的軌跡就是阿波羅尼斯圓.已知?jiǎng)狱c(diǎn)的軌跡是阿波羅尼斯圓,其方程為,其中,定點(diǎn)為軸上一點(diǎn),定點(diǎn)的坐標(biāo)為,若點(diǎn),則的最小值為()A. B.C. D.8.拋物線的焦點(diǎn)到直線的距離()A. B.C.1 D.29.已知數(shù)列的通項(xiàng)公式為.若數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為()A.2 B.3C.4 D.510.拋物線的焦點(diǎn)是A. B.C. D.11.已知雙曲線的左、右焦點(diǎn)分別為,過點(diǎn)的直線與圓相切于點(diǎn),交雙曲線的右支于點(diǎn),且點(diǎn)是線段的中點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.12.設(shè),向量,,,且,,則()A. B.C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩名運(yùn)動(dòng)員5場(chǎng)比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則甲、乙兩組數(shù)據(jù)的中位數(shù)是______.14.若在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的和,形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷構(gòu)造出新的數(shù)列,現(xiàn)將數(shù)列進(jìn)行構(gòu)造,第次得到數(shù)列;第次得到數(shù)列;依次構(gòu)造,第次得到數(shù)列;記,則(1)___________,(2)___________15.已知雙曲線:的右焦點(diǎn)為,過點(diǎn)向雙曲線的一條漸近線引垂線,垂足為,交另一條漸近線于,若,則雙曲線的漸近線方程為__________16.在空間直角坐標(biāo)系中,經(jīng)過且法向量的平面方程為,經(jīng)過且方向向量的直線方程為閱讀上面材料,并解決下列問題:給出平面的方程,經(jīng)過點(diǎn)的直線的方程為,則直線l與平面所成角的余弦值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點(diǎn)分別為,過右焦點(diǎn)作直線交于,其中的周長(zhǎng)為的離心率為.(1)求的方程;(2)已知的重心為,設(shè)和的面積比為,求實(shí)數(shù)的取值范圍.18.(12分)如圖,已知在四棱錐中,平面,四邊形為直角梯形,,,.(1)求直線與平面所成角的正弦值;(2)在線段上是否存在點(diǎn),使得二面角的余弦值?若存在,指出點(diǎn)的位置;若不存在,說明理由.19.(12分)如圖,在三棱錐中,,,為的中點(diǎn).(1)求證:平面;(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.20.(12分)如圖,在四棱錐中,底面ABCD是矩形,M是PA的中點(diǎn),N是BC的中點(diǎn),平面ABCD,且,(1)求證:∥平面PCD;(2)求平面MBC與平面ABCD夾角的余弦值21.(12分)已知拋物線,過焦點(diǎn)的直線l交拋物線C于M、N兩點(diǎn),且線段中點(diǎn)的縱坐標(biāo)為2(1)求直線l的方程;(2)設(shè)x軸上關(guān)于y軸對(duì)稱的兩點(diǎn)P、Q,(其中P在Q的右側(cè)),過P的任意一條直線交拋物線C于A、B兩點(diǎn),求證:始終被x軸平分22.(10分)已知拋物線的焦點(diǎn)為,點(diǎn)為坐標(biāo)原點(diǎn),直線過定點(diǎn)(其中,)與拋物線相交于兩點(diǎn)(點(diǎn)位于第一象限.(1)當(dāng)時(shí),求證:;(2)如圖,連接并延長(zhǎng)交拋物線于兩點(diǎn),,設(shè)和的面積分別為和,則是否為定值?若是,求出其值;若不是,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)兩直線平行可得出關(guān)于實(shí)數(shù)的等式,由此可解得實(shí)數(shù)的值.【詳解】由于直線與直線平行,則,解得.故選:D.2、D【解析】經(jīng)判斷點(diǎn)在圓內(nèi),與半徑相連,所以與垂直時(shí)弦長(zhǎng)最短,最長(zhǎng)為直徑【詳解】將代入圓方程得:,所以點(diǎn)在圓內(nèi),連接,當(dāng)時(shí),弦長(zhǎng)最短,,所以弦長(zhǎng),當(dāng)過圓心時(shí),最長(zhǎng)等于直徑8,所以的取值范圍是故選:D3、B【解析】由平均數(shù)、極差及中位數(shù)的定義依次求解即可比較【詳解】,,故甲、乙的平均數(shù)相同,甲、乙的極差分別為,,故不同,甲、乙的中位數(shù)分別為,,故不同,故選:4、B【解析】由題意求出函數(shù)的導(dǎo)函數(shù),然后令即可求解【詳解】因?yàn)?,所以,則,故選:5、A【解析】分析可知乙、丙的成績(jī)中必有位優(yōu)秀、位良好,結(jié)合題意進(jìn)行推導(dǎo),可得出結(jié)論.【詳解】由于個(gè)人中的成績(jī)中有位優(yōu)秀,位良好,甲知道乙、丙的成績(jī),還是不知道自己的成績(jī),則乙、丙的成績(jī)必有位優(yōu)秀、位良好,甲、丁的成績(jī)中必有位優(yōu)秀、位良好,因?yàn)榻o乙看丙的成績(jī),則乙必然知道自己的成績(jī),丁知道甲的成績(jī)后,必然知道自己的成績(jī).故選:A.6、D【解析】設(shè)直線傾斜角為,則,即可求出.【詳解】設(shè)直線的傾斜角為,則,又因?yàn)?,所?故選:D.7、D【解析】設(shè),,根據(jù)和求出a的值,由,兩點(diǎn)之間直線最短,可得的最小值為,根據(jù)坐標(biāo)求出即可.【詳解】設(shè),,所以,由,所以,因?yàn)榍?,所以,整理可得,又?dòng)點(diǎn)M的軌跡是,所以,解得,所以,又,所以,因?yàn)?,所以的最小值,?dāng)M在位置或時(shí)等號(hào)成立.故選:D8、B【解析】由拋物線可得焦點(diǎn)坐標(biāo),結(jié)合點(diǎn)到直線的距離公式,即可求解.【詳解】由拋物線可得焦點(diǎn)坐標(biāo)為,根據(jù)點(diǎn)到直線的距離公式,可得,即拋物線的焦點(diǎn)到直線的距離為.故選:B.9、C【解析】根據(jù)單調(diào)性分析出數(shù)列的正數(shù)項(xiàng)有哪些即可求解.【詳解】由條件有,當(dāng)時(shí),,即;當(dāng)時(shí),,即.即,所以取得最大值時(shí)n的值為.故選:C10、D【解析】先判斷焦點(diǎn)的位置,再?gòu)臉?biāo)準(zhǔn)型中找出即得焦點(diǎn)坐標(biāo).【詳解】焦點(diǎn)在軸上,又,故焦點(diǎn)坐標(biāo)為,故選D.【點(diǎn)睛】求圓錐曲線的焦點(diǎn)坐標(biāo),首先要把圓錐曲線的方程整理為標(biāo)準(zhǔn)方程,從而得到焦點(diǎn)的位置和焦點(diǎn)的坐標(biāo).11、D【解析】焦點(diǎn)三角形問題,可結(jié)合為三角形的中位線,判斷:焦點(diǎn)三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點(diǎn)是線段的中點(diǎn),點(diǎn)是線段的中點(diǎn),為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點(diǎn)睛】雙曲線上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形,稱為雙曲線的焦點(diǎn)三角形,與焦點(diǎn)三角形有關(guān)的計(jì)算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系12、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因?yàn)?,可得,解得,即,又因?yàn)?,可得,解得,即,可得,所?故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由極差以及平均數(shù)得出,進(jìn)而得出中位數(shù).【詳解】由可得,,,因?yàn)橐业梅值钠骄禐?4,所以,所以甲、乙兩組數(shù)據(jù)的中位數(shù)是.故答案為:14、①.②.【解析】根據(jù)題意得到,再利用疊加法求解即可.【詳解】由題知:,,,所以,,,……,,所以,,……,,即,所以.故答案為:;15、【解析】由題意得雙曲線的右焦點(diǎn)F(c,0),設(shè)一漸近線OM的方程為,則另一漸近線ON的方程為.設(shè),∵,∴,∴,解得∴點(diǎn)M的坐標(biāo)為,又,∴,整理得,∴雙曲線的漸近線方程為答案:點(diǎn)睛:(1)已知雙曲線的標(biāo)準(zhǔn)方程求雙曲線的漸近線方程時(shí),只要令雙曲線的標(biāo)準(zhǔn)方程中“1”為“0”就得到兩漸近線方程,即方程就是雙曲線的兩條漸近線方程(2)求雙曲線的漸進(jìn)線方程的關(guān)鍵是求出的關(guān)系,并根據(jù)焦點(diǎn)的位置確定出漸近線的形式,并進(jìn)一步得到其方程16、##【解析】根據(jù)材料結(jié)合已知條件求得平面的法向量以及直線的方向向量,即可用向量法求得線面角.【詳解】因?yàn)槠矫娴姆匠?,不妨令,則,故其過點(diǎn),設(shè)其法向量為,根據(jù)題意則,即,又平面的方程為,則,不妨取,則,則平面的法向量;經(jīng)過點(diǎn)的直線的方程為,不妨取,則,則該直線過點(diǎn),則直線的方向向量.設(shè)直線與平面所成的角為,則.又,故,即直線l與平面所成角的余弦值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)已知焦點(diǎn)弦三角形的周長(zhǎng),以及離心率求橢圓方程,待定系數(shù)直接求解即可.(2)第一步設(shè)點(diǎn)設(shè)直線,第二步聯(lián)立方程韋達(dá)定理,第三步條件轉(zhuǎn)化,利用三角形等面積法,列方程,第四步利用韋達(dá)定理進(jìn)行轉(zhuǎn)化,計(jì)算即可.【小問1詳解】因?yàn)榈闹荛L(zhǎng)為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問2詳解】方法一:,,的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.令,②則,可得當(dāng)時(shí),當(dāng)時(shí),所以,又解得③由①②③得,解得.所以實(shí)數(shù)的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.所以因?yàn)?,所以解得②由①②解?所以實(shí)數(shù)的取值范圍是.18、(1);(2)存在,為上靠近點(diǎn)的三等分點(diǎn)【解析】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,求出的坐標(biāo)以及平面的一個(gè)法向量,計(jì)算即可求解;(2)假設(shè)線段上存在點(diǎn)符合題意,設(shè)可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【詳解】(1)分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,如圖所示:則,,,.不妨設(shè)平面的一個(gè)法向量,則有,即,取.設(shè)直線與平面所成的角為,則,所以直線與平面所成角的正弦值為;(2)假設(shè)線段上存在點(diǎn),使得二面角的余弦值.設(shè),則,從而,,.設(shè)平面的法向量,則有,即,取.設(shè)平面的法向量,則有,即,取.,解得:或(舍),故存在點(diǎn)滿足條件,為上靠近點(diǎn)的三等分點(diǎn)【點(diǎn)睛】求空間角的常用方法:(1)定義法,由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對(duì)應(yīng)三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計(jì)算向量夾角(直線方向向量與直線方向向量、直線方向向量與平面法向量,平面法向量與平面法向量)余弦值,即可求出結(jié)果.19、(1)證明見解析;(2)【解析】(1)易得,再由勾股定理逆定理證明,即可得線面垂直;(2)根據(jù)(1)得,進(jìn)而根據(jù)幾何關(guān)系,利用等體積法求解即可.【詳解】解:(1)連接,∵,是中點(diǎn),∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵點(diǎn)在棱上,且,,為的中點(diǎn).∴,∴由余弦定理得,即,∴,由(1)平面,設(shè)點(diǎn)到平面的距離為∴,即,解得:所以點(diǎn)到平面的距離為.20、(1)詳見解析;(2)【解析】(1)取PD的中點(diǎn)E,連接ME,CE,易證四邊形是平行四邊形,得到,再利用線面平行的判定定理證明;(2)建立空間直角坐標(biāo)系,求得平面MBC的一個(gè)法向量,易知平面ABCD的一個(gè)法向量為:,由求解.【小問1詳解】證明:如圖所示:取PD的中點(diǎn)E,連接ME,CE,因?yàn)榈酌鍭BCD是矩形,M是PA的中點(diǎn),N是BC的中點(diǎn),所以,所以四邊形是平行四邊形,所以,又平面PCD,平面PCD,所以∥平面PCD;【小問2詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面MBC的一個(gè)法向量為,則,即,令,得,易知平面ABCD的一個(gè)法向量為:,所以,所以平面MBC與平面ABCD的夾角的余弦值為.21、(1);(2)證明見解析.【解析】(1)設(shè)直線l的方程為:,聯(lián)立方程,利用韋達(dá)定理可得結(jié)果;(2)設(shè),借助韋達(dá)定理表示,即可得到結(jié)果.【詳解】(1)由已知可設(shè)直線l的方程為:,聯(lián)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 質(zhì)監(jiān)系統(tǒng)考試試題及答案
- 臺(tái)灣民法考試題及答案
- 校園保安反恐防暴安全知識(shí)培訓(xùn)課
- 政工人員試題及答案
- 函數(shù)高考試題及答案
- 2025年貴陽(yáng)市城鄉(xiāng)建設(shè)學(xué)校外聘教師招聘考試試題(含答案)
- 醫(yī)院和住院環(huán)境醫(yī)學(xué)必看試題帶答案
- 《婚姻繼承法知識(shí)點(diǎn)》通關(guān)試題(附答案)
- 主治醫(yī)師放射科輻射安全與應(yīng)急預(yù)案模擬試題(含答案)
- 院感選擇題及答案
- 業(yè)務(wù)跟單培訓(xùn)
- 河北省唐山市路北區(qū)2023-2024學(xué)年八年級(jí)下學(xué)期期末數(shù)學(xué)試題
- DL-T-5161.13-2018電氣裝置安裝工程質(zhì)量檢驗(yàn)及評(píng)定規(guī)程第13部分:電力變流設(shè)備施工質(zhì)量檢驗(yàn)
- 安全顧問聘請(qǐng)協(xié)議
- 糖尿病酮癥酸中毒的護(hù)理課件
- 設(shè)備材料進(jìn)場(chǎng)報(bào)驗(yàn)單
- 班組長(zhǎng)計(jì)劃管理能力考試題庫(kù)-上(選擇題)
- (完整版)《機(jī)械制造工藝基礎(chǔ)》教案
- 小學(xué)四年級(jí)數(shù)學(xué)口算題(每頁(yè)60道直接打印).文檔
- 誘思探究理論
- 銑床日常點(diǎn)檢保養(yǎng)記錄表
評(píng)論
0/150
提交評(píng)論