2023-2024學年湖南省邵陽市邵東第十中學數(shù)學高二上期末復習檢測試題含解析_第1頁
2023-2024學年湖南省邵陽市邵東第十中學數(shù)學高二上期末復習檢測試題含解析_第2頁
2023-2024學年湖南省邵陽市邵東第十中學數(shù)學高二上期末復習檢測試題含解析_第3頁
2023-2024學年湖南省邵陽市邵東第十中學數(shù)學高二上期末復習檢測試題含解析_第4頁
2023-2024學年湖南省邵陽市邵東第十中學數(shù)學高二上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖南省邵陽市邵東第十中學數(shù)學高二上期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A B.C. D.2.已知雙曲線的兩個頂點分別為A、B,點P為雙曲線上除A、B外任意一點,且點P與點A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.33.如果在一實驗中,測得的四組數(shù)值分別是,則y與x之間的回歸直線方程是()A. B.C. D.4.在四棱錐中,底面是正方形,為的中點,若,則()A B.C. D.5.已知向量,,若,則()A.1 B.C. D.26.設拋物線的焦點為,點為拋物線上一點,點坐標為,則的最小值為()A. B.C. D.7.正三棱錐的側面都是直角三角形,,分別是,的中點,則與平面所成角的余弦值為()A. B.C. D.8.古希臘數(shù)學家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數(shù)且的點的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點,為橢圓短軸的端點,,分別為橢圓的左右焦點,動點滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.9.已知P是直線上的動點,PA,PB是圓的切線,A,B為切點,C為圓心,那么四邊形PACB的面積的最小值是()A2 B.C.3 D.10.如圖①所示,將一邊長為1的正方形沿對角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.11.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.12.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的聚焦特點:從拋物線的焦點發(fā)出的光經(jīng)過拋物線反射后,光線都平行于拋物線的對稱軸.另一方面,根據(jù)光路的可逆性,平行于拋物線對稱軸的光線射向拋物線后的反射光線都會匯聚到拋物線的焦點處.已知拋物線,一條平行于拋物線對稱軸的光線從點向左發(fā)出,先經(jīng)拋物線反射,再經(jīng)直線反射后,恰好經(jīng)過點,則該拋物線的標準方程為___________.14.已知,,則___________.15.已知圓,則圓心坐標為______.16.用數(shù)字1,2,3,4,5,6,7,8,9組成沒有重復數(shù)字,且至多有一個數(shù)字是奇數(shù)的四位數(shù),這樣的四位數(shù)一共有___________個.(用數(shù)字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,設,判斷是否為定值?若是,求出該定值;若不是,說明理由.18.(12分)已知命題:;:.(1)若“”為真命題,求實數(shù)的取值范圍;(2)若“”為真命題,求實數(shù)的取值范圍.19.(12分)如圖,已知矩形ABCD所在平面外一點P,平面ABCD,E、F分別是AB、PC的中點求證:(1)共面;(2)求證:20.(12分)已知點是圓:上任意一點,是圓內一點,線段的垂直平分線與半徑相交于點(1)當點在圓上運動時,求點的軌跡的方程;(2)設不經(jīng)過坐標原點,且斜率為的直線與曲線相交于,兩點,記,的斜率分別是,.當,都存在且不為時,試探究是否為定值?若是,求出此定值;若不是,請說明理由21.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.(I)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.22.(10分)函數(shù),.(1)討論函數(shù)的單調性;(2)若在上恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)得到三角形為等腰三角形,然后結合雙曲線的定義得到,設,進而作,得出,由此求出結果【詳解】因為,所以,即所以,由雙曲線的定義,知,設,則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B2、C【解析】根據(jù)題意設設,根據(jù)題意得到,進而求得離心率【詳解】根據(jù)題意得到設,因為,所以,所以,則故選:C.3、B【解析】根據(jù)已知數(shù)據(jù)求樣本中心點,由樣本中心點在回歸直線上,將其代入各選項的回歸方程驗證即可.【詳解】由題設,,因為回歸直線方程過樣本點中心,A:,排除;B:,滿足;C:,排除;D:,排除.故選:B4、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.5、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B6、B【解析】設點P在準線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,進而把問題轉化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設點P在準線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當D,P,M三點共線時,|PM|+|PD|取得最小值為故選:B7、C【解析】以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標系,利用向量法能求出PB與平面PEF所成角的正弦值.【詳解】∵正三棱錐的側面都是直角三角形,E,F(xiàn)分別是AB,BC的中點,∴以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標系,設,則,,,,,,,,設平面PEF的法向量,則,取,得,設PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.8、A【解析】由題可得動點M的軌跡方程,可得,,即求.【詳解】設,,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A9、D【解析】由圓C的標準方程可得圓心為(1,1),半徑為1,根據(jù)切線的性質可得四邊形PACB面積等于,,故求解最小時即可確定四邊形PACB面積的最小值.【詳解】圓C:x2+y2-2x-2y+1=0即,表示以C(1,1)為圓心,以1為半徑的圓,由于四邊形PACB面積等于2×××=,而,故當最小時,四邊形PACB面積最小,又的最小值等于圓心C到直線l:的距離d,而,故四邊形PACB面積的最小值為,故選:D10、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點在面上的投影為的中點,由俯視圖可以看出C點在面上的投影為的中點,所以其左視圖為如圖所示的等腰直角三角形,直角邊長為,于是左視圖的面積為故選:A.11、A【解析】根據(jù)雙曲線漸近線方程設出方程,再由其過的點即可求解.【詳解】漸近線方程是,設雙曲線方程為,又因為雙曲線經(jīng)過點,所以有,所以雙曲線方程為,化為標準方程為.故選:A12、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)拋物線的聚焦特點,經(jīng)過拋物線后經(jīng)過拋物線焦點,再經(jīng)直線反射后經(jīng)過點,則根據(jù)反射特點,列出相關方程,解出方程即可.【詳解】設光線與拋物線的交點為,拋物線的焦點為,則可得:拋物線的焦點為:則直線的方程為:設直線與直線的交點為,則有:解得:則過點且垂直于的直線的方程為:根據(jù)題意可知:點關于直線的對稱點在直線上設點,的中點為,則有:直線垂直于,則有:點在直線上,則有:點在直線上,則有:化簡得:又故故答案為:【點睛】直線關于直線對稱對稱,利用中點坐標公式和直線與直線垂直的特點建立方程,根據(jù)題意列出隱含的方程是關鍵14、5【解析】根據(jù)空間向量的數(shù)量積運算的坐標表示運算求解即可.【詳解】解:因為,,所以.故答案為:15、【解析】將圓的一般方程配方程標準方程即可.【詳解】圓,即,它的圓心坐標是.故答案為:.16、504【解析】分兩種情況求解,一是四個數(shù)字中沒有奇數(shù),二是四個數(shù)字中有一個奇數(shù),然后根據(jù)分類加法原理可求得結果【詳解】當四個數(shù)字中沒有奇數(shù)時,則這樣的四位數(shù)有種,當四個數(shù)字中有一個奇數(shù)時,則從5個奇數(shù)中選一個奇數(shù),再從4個偶數(shù)中選3個數(shù),然后對這4個數(shù)排列即可,所以有種,所以由分類加法原理可得共有種,故答案為:504三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是,0【解析】(1)根據(jù)題意,設拋物線的方程為:,則,,進而根據(jù)得,進而得答案;(2)直線的方程為,進而聯(lián)立方程,結合韋達定理與向量數(shù)量積運算化簡整理即可得答案.【小問1詳解】解:由題意,設拋物線的方程為:,所以點的坐標為,點的坐標為,因為,所以,即,解得.所以拋物線的方程為:【小問2詳解】解:設直線的方程為,則聯(lián)立方程得,所以,,因為,所以.所以為定值.18、(1);(2).【解析】(1)先分別求出命題為真命題時的取值范圍,再由已知“”為真命題進行分類討論即可求解;(2)由(1)可知,當同時為真時,即可求出的范圍.試題解析:若為真,則,所以,則若為真,則,即.(1)若“”為真,則或,則.(2)若“”為真,則且,則.19、(1)詳見解析;(2)詳見解析.【解析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標系,設,,,求出,,,,0,,,,,從而,由此能證明共面(2)求出,0,,,,,由,能證明【詳解】證明:如圖,以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,設,,,則0,,0,,2b,,2b,,0,,為AB的中點,F(xiàn)為PC的中點,0,,b,,b,,,2b,,共面.(2),【點睛】本題考查三個向量共面的證明,考查兩直線垂直的證明,是基礎題20、(1);(2)是定值,.【解析】(1)根據(jù)給定條件探求得,再借助橢圓定義直接求得軌跡的方程.(2)設出直線的方程,再與軌跡的方程聯(lián)立,借助韋達定理計算作答.【小問1詳解】圓:的圓心,半徑,因線段的垂直平分線與半徑相交于點,則,而,于是得,因此,點的軌跡是以C,A為左右焦點,長軸長為4的橢圓,短半軸長有,所以軌跡的方程為.【小問2詳解】依題意,設直線的方程為:,,由消去y并整理得:,,則且,設,則有,,因直線,的斜率,都存在且不為,因此,且,,,所以直線,的斜率,都存在且不為時,是定值,這個定值是.【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值21、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎知識,考查空間想象能力、分析問題的能力、計算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點M(M∈平面PAB),點M即為所求的一個點.理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點N,使得AP=PN,則所找的點可以是直線MN上任意一點)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設BC=1,則在Rt△PAD中,PA=AD=2.過點A作AH⊥CE,交CE的延長線于點H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點,以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標系A-xyz,則A(0,0,0),P(0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論