陜西省西安市碑林區(qū)鐵一中學2023年數(shù)學高一第二學期期末復習檢測試題含解析_第1頁
陜西省西安市碑林區(qū)鐵一中學2023年數(shù)學高一第二學期期末復習檢測試題含解析_第2頁
陜西省西安市碑林區(qū)鐵一中學2023年數(shù)學高一第二學期期末復習檢測試題含解析_第3頁
陜西省西安市碑林區(qū)鐵一中學2023年數(shù)學高一第二學期期末復習檢測試題含解析_第4頁
陜西省西安市碑林區(qū)鐵一中學2023年數(shù)學高一第二學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在正四棱柱中,,則點到平面的距離是()A. B. C. D.2.函數(shù)是()A.奇函數(shù) B.非奇非偶函數(shù) C.偶函數(shù) D.既是奇函數(shù)又是偶函數(shù)3.已知滿足:,則目標函數(shù)的最大值為()A.6 B.8 C.16 D.44.已知數(shù)列的前項和為,且,,則()A.127 B.129 C.255 D.2575.已知向量,的夾角為,且,,則與的夾角等于A. B. C. D.6.若過點,的直線與直線平行,則的值為()A.1 B.4 C.1或3 D.1或47.已知扇形圓心角為,面積為,則扇形的弧長等于()A. B. C. D.8.設(shè)是兩條不同的直線,是兩個不同的平面,則下列命題中正確的個數(shù)為①若,,則②若,則③若,則④若,則A.1 B.2 C.3 D.49.將函數(shù)的圖象向右平移個的單位長度,再將所得到的函數(shù)圖象上所有點的橫坐標伸長為原來的倍(縱坐標不變),則所得到的圖象的函數(shù)解析式為()A. B.C. D.10.下列角中終邊與相同的角是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某中學從甲乙丙3人中選1人參加全市中學男子1500米比賽,現(xiàn)將他們最近集訓中的10次成績(單位:秒)的平均數(shù)與方差制成如下的表格:甲乙丙平均數(shù)250240240方差151520根據(jù)表中數(shù)據(jù),該中學應(yīng)選__________參加比賽.12.若圓弧長度等于圓內(nèi)接正六邊形的邊長,則該圓弧所對圓心角的弧度數(shù)為________.13.已知數(shù)列,其前項和為,若,則在,,…,中,滿足的的個數(shù)為______.14.在Rt△ABC中,∠B=90°,BC=6,AB=8,點M為△ABC內(nèi)切圓的圓心,過點M作動直線l與線段AB,AC都相交,將△ABC沿動直線l翻折,使翻折后的點A在平面BCM上的射影P落在直線BC上,點A在直線l上的射影為Q,則的最小值為_____.15.某校女子籃球隊7名運動員身高(單位:cm)分布的莖葉圖如圖,已知記錄的平均身高為175cm,但記錄中有一名運動員身高的末位數(shù)字不清晰,如果把其末位數(shù)字記為x,那么x的值為________.16.走時精確的鐘表,中午時,分針與時針重合于表面上的位置,則當下一次分針與時針重合時,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點.(Ⅰ)求證:PC∥平面EBD;(Ⅱ)求證:平面PBC⊥平面PCD.18.如圖,在四邊形中,,,,.(1)若,求;(2)求四邊形面積的最大值.19.某銷售公司通過市場調(diào)查,得到某種商品的廣告費(萬元)與銷售收入(萬元)之間的數(shù)據(jù)如下:廣告費(萬元)1245銷售收入(萬元)10224048(1)求銷售收入關(guān)于廣告費的線性回歸方程;(2)若該商品的成本(除廣告費之外的其他費用)為萬元,利用(1)中的回歸方程求該商品利潤的最大值(利潤=銷售收入-成本-廣告費).參考公式:,.20.在平面直角坐標系中,直線截以坐標原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標軸交于點,,當時,求直線的方程;(3)設(shè),是圓上任意兩點,點關(guān)于軸的對稱點為,若直線,分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.21.已知等差數(shù)列與等比數(shù)列滿足,,且.(1)求數(shù)列,的通項公式;(2)設(shè),是否存在正整數(shù),使恒成立?若存在,求出的值;若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

計算的面積,根據(jù)可得點到平面的距離.【詳解】中,,,∴的邊上的高為,∴,設(shè)到平面的距離為,則,又,∴,解得.故選A.【點睛】本題涉及點面距離的求法,點面距可以通過建立空間直角坐標系來求得點面距離,或者尋找面面垂直,再直接過點做交線的垂線即可;當點面距離不好求時,也可以根據(jù)等積法把點到平面的距離歸結(jié)為一個容易求得的幾何體的體積.2、C【解析】

利用誘導公式將函數(shù)的解析式化簡,然后利用定義判斷出函數(shù)的奇偶性.【詳解】由誘導公式得,該函數(shù)的定義域為,關(guān)于原點對稱,且,因此,函數(shù)為偶函數(shù),故選C.【點睛】本題考查函數(shù)奇偶性的判斷,解題時要將函數(shù)解析式進行簡化,然后利用奇偶性的定義進行判斷,考查分析問題和解決問題的能力,屬于基礎(chǔ)題.3、D【解析】

作出不等式組對應(yīng)的平面區(qū)域,數(shù)形結(jié)合,利用z的幾何意義,即得?!驹斀狻坑深}得,不等式組對應(yīng)的平面區(qū)域如圖,中z表示函數(shù)在y軸的截距,由圖易得,當函數(shù)經(jīng)過點A時z取到最大值,A點坐標為,因此目標函數(shù)的最大值為4.故選:D【點睛】本題考查線性規(guī)劃,是基礎(chǔ)題。4、C【解析】

利用迭代關(guān)系,得到另一等式,相減求出,判斷數(shù)列是否為等比數(shù)列,利用等比數(shù)列求和公式可得.【詳解】因為,,所以,相減得,,,又,所以,,所以數(shù)列是等比數(shù)列,所以,故選C.【點睛】本題考查等比數(shù)列的求和,數(shù)列通項公式的求法,考查計算求解能力,屬于中檔題.5、C【解析】

根據(jù)條件即可求出,從而可求出,,,然后可設(shè)與的夾角為,從而可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】,;,,;設(shè)與的夾角為,則;又,,故選.【點睛】本題主要考查向量數(shù)量積的定義運用,向量的模的求法,以及利用數(shù)量積求向量夾角.6、A【解析】

首先設(shè)一條與已知直線平行的直線,點,代入直線方程即可求出的值.【詳解】設(shè)與直線平行的直線:,點,代入直線方程,有.故選:A.【點睛】本題考查了利用直線的平行關(guān)系求參數(shù),屬于基礎(chǔ)題.注意直線與直線在時相互平行.7、C【解析】

根據(jù)扇形面積公式得到半徑,再計算扇形弧長.【詳解】扇形弧長故答案選C【點睛】本題考查了扇形的面積和弧長公式,解出扇形半徑是解題的關(guān)鍵,意在考查學生的計算能力.8、A【解析】

根據(jù)面面垂直的定義判斷①③錯誤,由面面平行的性質(zhì)判斷②錯誤,由線面垂直性質(zhì)、面面垂直的判定定理判定④正確.【詳解】如圖正方體,平面是平面,平面是平面,但兩直線與不垂直,①錯;平面是平面,平面是平面,但兩直線與不平行,②錯;直線是直線,直線是直線,滿足,但平面與平面不垂直,③錯;由得,∵,過作平面與平面交于直線,則,于是,∴,④正確.∴只有一個命題正確.故選A.【點睛】本題考查空間直線與平面、平面與平面的位置關(guān)系.對一個命題不正確,可只舉一例說明即可.對正確的命題一般需要證明.9、A【解析】

由題意利用函數(shù)的圖象變換法則,即可得出結(jié)論?!驹斀狻繉⒑瘮?shù)的圖象向右平移個的單位長度,可得的圖象,再將所得到的函數(shù)圖象上所有點的橫坐標伸長為原來的2倍(縱坐標不變),則所得到的圖象的函數(shù)解析式為,故選.【點睛】本題主要考查函數(shù)的圖象變換法則,注意對的影響。10、B【解析】與30°的角終邊相同的角α的集合為{α|α=330°+k?360°,k∈Z}當k=-1時,α=-30°,故選B二、填空題:本大題共6小題,每小題5分,共30分。11、乙;【解析】

一個看均值,要均值小,成績好;一個看方差,要方差小,成績穩(wěn)定.【詳解】乙的均值比甲小,與丙相同,乙的方差與甲相同,但比丙小,即乙成績好,又穩(wěn)定,應(yīng)選乙、故答案為乙.【點睛】本題考查用樣本的數(shù)據(jù)特征來解決實際問題.一般可看均值(找均值好的)和方差(方差小的穩(wěn)定),這樣比較易得結(jié)論.12、1【解析】

根據(jù)圓的內(nèi)接正六邊形的邊長得出弧長,利用弧長公式即可得到圓心角.【詳解】因為圓的內(nèi)接正六邊形的邊長等于圓的半徑,所以圓弧長所對圓心角的弧度數(shù)為1.故答案為:1【點睛】此題考查弧長公式,根據(jù)弧長求圓心角的大小,關(guān)鍵在于熟記圓的內(nèi)接正六邊形的邊長.13、1【解析】

運用周期公式,求得,運用誘導公式及三角恒等變換,化簡可得,即可得到滿足條件的的值.【詳解】解:,可得周期,,則滿足的的個數(shù)為.故答案為:1.【點睛】本題考查三角函數(shù)的周期性及應(yīng)用,考查三角函數(shù)的化簡和求值,以及運算能力,屬于中檔題.14、825【解析】

以AB,BC所在直線為坐標軸建立平面直角坐標系,設(shè)直線l的斜率為k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【詳解】過點M作△ABC的三邊的垂線,設(shè)⊙M的半徑為r,則r2,以AB,BC所在直線為坐標軸建立平面直角坐標系,如圖所示,則M(2,2),A(0,8),因為A在平面BCM的射影在直線BC上,所以直線l必存在斜率,過A作AQ⊥l,垂足為Q,交直線BC于P,設(shè)直線l的方程為:y=k(x﹣2)+2,則|AQ|,又直線AQ的方程為:yx+8,則P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①當k>﹣3時,4(k+3)25≥825,當且僅當4(k+3),即k3時取等號;②當k<﹣3時,則4(k+3)23≥823,當且僅當﹣4(k+3),即k3時取等號.故答案為:825【點睛】本題考查了考查空間距離的計算,考查基本不等式的運算,意在考查學生對這些知識的理解掌握水平.15、2【解析】

根據(jù)莖葉圖的數(shù)據(jù)和平均數(shù)的計算公式,列出方程,即可求解,得到答案.【詳解】由題意,可得,即,解得.【點睛】本題主要考查了莖葉圖的認識和平均數(shù)的公式的應(yīng)用,其中解答中根據(jù)莖葉圖,準確的讀取數(shù)據(jù),再根據(jù)數(shù)據(jù)的平均數(shù)的計算公式,列出方程求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、.【解析】

設(shè)時針轉(zhuǎn)過的角的弧度數(shù)為,可知分針轉(zhuǎn)過的角為,于此得出,由此可計算出的值,從而可得出時針轉(zhuǎn)過的弧度數(shù)的絕對值的值.【詳解】設(shè)時針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由分針的角速度是時針角速度的倍,知分針轉(zhuǎn)過的角的弧度數(shù)的絕對值為,由題意可知,,解得,因此,時針轉(zhuǎn)過的弧度數(shù)的絕對值等于,故答案為.【點睛】本題考查弧度制的應(yīng)用,主要是要弄清楚時針與分針旋轉(zhuǎn)的角之間的等量關(guān)系,考查分析問題和計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析【解析】試題分析:(1)連,與交于,利用三角形的中位線,可得線線平行,從而可得線面平行;

(2)證明,即可證得平面平面.試題解析:(Ⅰ)連接AC交BD與O,連接EO,∵E、O分別為PA、AC的中點,∴EO∥PC,∵PC?平面EBD,EO?平面EBD∴PC∥平面EBD(Ⅱ)∵PD⊥平面ABCD,BC?平面ABCD,∴PD⊥BC,∵ABCD為正方形,∴BC⊥CD,∵PD∩CD=D,PD、CD?平面PCD∴BC⊥平面PCD,又∵BC?平面PBC,∴平面PBC⊥平面PCD.【點睛】本題考查線面平行,考查面面平行,掌握線面平行,面面平行的判定方法是關(guān)鍵.18、(1);(2).【解析】

(1)直接利用余弦定理,即可得到本題答案;(2)由四邊形ABCD的面積=,得四邊形ABCD的面積,求S的最大值即可得到本題答案.【詳解】(1)當時,在中,由余弦定理得,設(shè)(),則,即,解得,所以;(2)的面積為,在中,由余弦定理得,所以,的面積為,所以,四邊形的面積為,因為,所以當時,四邊形的面積最大,最大值為.【點睛】本題主要考查利用余弦定理、面積公式及三角函數(shù)的性質(zhì)解決實際問題.19、(1);(2)19.44(萬無)【解析】

(1)先求出,然后求出回歸系數(shù),得回歸方程;(2)由回歸方程得估計銷售收入,減去成本得利潤,由二次函數(shù)知識得最大值.【詳解】(1)由題意,,所以,,所以回歸方程為;(2)由(1),所以(萬元)時,利潤最大且最大值為19.44(萬元).【點睛】本題考查求線性回歸直線方程,考查回歸方程的應(yīng)用.考查了學生的運算求解能力.20、(1);(2);(3)見解析【解析】

(1)利用點到直線距離公式,可以求出弦心距,根據(jù)垂徑定理結(jié)合勾股定理,可以求出圓的半徑,進而可以求出圓的方程;(2)設(shè)出直線的截距式方程,利用圓的切線性質(zhì),得到一個方程,結(jié)合已知,又得到一個方程,兩個方程聯(lián)立,解方程組,即可求出直線直線的方程;(3)設(shè),,則,,,分別求出直線與軸交點坐標、直線與軸交點坐標,求出的表達式,通過計算可得.【詳解】(1)因為點到直線的距離為,所以圓的半徑為,故圓的方程為.(2)設(shè)直線的方程為,即,由直線與圓相切,得,①.②由①②解得,此時直線的方程為.(3)設(shè),,則,,,直線與軸交點坐標為,,直線與軸交點坐標為,,,為定值2.【點睛】本題考查了圓的垂徑定理、圓的切線性質(zhì)、勾股定理,考查了求直線方程,考查了數(shù)學運算能力.21、(1),.(2)存在正整數(shù),,證明見解析【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論