【英語(yǔ)論文】用增值評(píng)價(jià)技術(shù)對(duì)學(xué)生成績(jī)進(jìn)行分析的初步研究_第1頁(yè)
【英語(yǔ)論文】用增值評(píng)價(jià)技術(shù)對(duì)學(xué)生成績(jī)進(jìn)行分析的初步研究_第2頁(yè)
【英語(yǔ)論文】用增值評(píng)價(jià)技術(shù)對(duì)學(xué)生成績(jī)進(jìn)行分析的初步研究_第3頁(yè)
【英語(yǔ)論文】用增值評(píng)價(jià)技術(shù)對(duì)學(xué)生成績(jī)進(jìn)行分析的初步研究_第4頁(yè)
【英語(yǔ)論文】用增值評(píng)價(jià)技術(shù)對(duì)學(xué)生成績(jī)進(jìn)行分析的初步研究_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

ApilotstudyofvalueaddedanalysisforBeijingseniorsecondaryschool用增值評(píng)價(jià)技術(shù)對(duì)學(xué)生成績(jī)進(jìn)行分析的初步研究摘要:用多水平分析技術(shù)對(duì)我國(guó)7所高中1999年參加高考的l051名學(xué)生的中招和高招成績(jī)及其他變量,建立7種模型進(jìn)行分析,結(jié)果發(fā)現(xiàn)在校正了學(xué)生先前的學(xué)習(xí)成績(jī)和有關(guān)其他變量的影響后,各學(xué)校對(duì)學(xué)生的數(shù)學(xué)、英語(yǔ)和總成績(jī)的影響(增值)明顯不同,基于多水平分析結(jié)果的比較比傳統(tǒng)的原始分比較更加公平、科學(xué)。對(duì)各變量之間的相互影響也進(jìn)行了分析,并與國(guó)際上的有關(guān)研究結(jié)果進(jìn)行了比較,本文也對(duì)如何把考試分?jǐn)?shù)用于學(xué)校管理進(jìn)行了初步的探討。關(guān)鍵詞:多水平分析;增值評(píng)價(jià);成績(jī);學(xué)校管理Abstract:DatafromsevenBeijingseniorsecondaryschoolswasanalyzedusingMultilevelanalysistechniqueforschooleffectivenessintermsofvalueaddedmeasureanditsimplicationforschooladministration.Similartrendsinourstudywerefoundwiththeinternationalstudies.Students’Priorattainmentcanexplainalargepartofoutcomevariance,themodelincludingstudent’spriorattainment,schoolcontextfactors,studentindividualvariablesisoptimalmodel.Schooleffectsdifferintermofsubject,studentgroupcategorizedbygenderandotherindividualfactors.Thisstronglyshowthemultifacetcharacteristicsofthevalueaddedmeasure,andsuggestamultiple,dynamicvalueaddedmeasureisessentialforschoolevaluation.Wefinddifferentschooleffectsintermofsubject,thismeansvalueaddedmeasureisausefultoolforschoolevaluation,butforimplicationinBeijingeducationalpractice,itneedfurtherresearch.Theresearchalsoprovidedanexampleabouthowtomakegooduseofexamscoreforeducationadministrationandothereducationalpractice.Keywords:Multilevelanalysistechnique;valueaddedmeasure;examscore;schooladministration

IntroductionTherehavebeenmanystudiesaboutschooleffectivenessmeasurementbasedonvalueaddedanalysisusingmultilevelstatisticstechnique(Thomasetal.,l994,1996,1997,1999,Sammonsl997,1999,Yang1999,Goldsteinl996,1997).Generally,thesestudytopicscoverthedefinitionofschooleffectivenessandimprovement,thevalue—addedmethodandtheapplicationofmultilevelanalysis,andsoon,mainlyontheanalysisofstudentacademicattainment.Hereisabriefreviewofthesestudies.SchooleffectivenessandvaluedaddedmethodAsresponsetoColeman’sreport(Colemanetal.,l966),whichreferredtothe‘equalityofeducationalopportunity’andtoJencks’book(Jencksetal.,l972),whichwasonthe‘Inequality:areassessmentoftheeffectoffamilyandschoolinginAmerica’,andresponsetothePublicationof‘LeagueTable’inUK(Goldsteinl996),manyresearchesonschoolingeffectonstudentattainmentemergedinUS,UK,andotherareas.Althoughthedefinitionofschooleffectivenesshavesomediscrepanciesfordifferentresearchers(Cheng1996),somecharacteristicsofeffectiveschoolsuchasprofessionalleadership,maximizationoflearningtime,purposefulteaching,highexpectation,positivereinforcement,etal.,areacceptedbymostpeople(Sammonsl999).Generally,measureofschooleffectivenessinvolveschoosinganoutcomeandthenstudyingaveragedifferenceamongschoolsafteradjustingforrelevantfactorssuchastheintakeachievementsandsomestudentbackgroundcharacteristics.Althoughtheunadjustedresultsareinformativetosomeextentforeducationevaluation,justanexamresultdoesnotshowaschool’sprogresscompletely.Furthermore.a(chǎn)singlestatisticmaynotbeanadequatesummaryofschool’seffectonstudent’sprogress.schoolmayboosttheprogressofdifferenttypesofstudentatdifferentrateindifferentdepartments/subjects.Forfairerandmoreaccuratewaytomeasureandreportschoolperformance,theValued—AddedMethodisacceptedbymanyeducationresearcherandpractitionernow.Itisseenasbothlessproblematicintermsofhowacceptableprinciplesaretopolicy—makerandschoolseniormanagers,andlessquestionedeveninthemostscepticalofstaffroom.ThismethodhasbecamethemainstreamofBritishschooleffectivenessstudiesnow.‘Therearevariousofdefiningvalueaddedandtheseencompassbothqualitativejudgmentandquantitativemeasures.Valueaddedapproachesalsodifferinthebalanceofemphasisplacedonevaluatingstudentoutcomesdirectly,orindirectly,viathequalityoftheteachingandlearningprocess.…alldefinitionsofvalueaddedhavethecommonaimofassessingthequalityandextentofaschool’seffectivenessinpromotingstudentachievement.(Sammonsetal.1997,P.24)’.Thomasandcollegues(1998)definethe‘Valueadded’asanindicationoftheextenttowhichanygivenschoolhasfosteredtheprogressofallstudentsinarangeofsubjectduringaparticulartimeperiodoroverparticularyearsincomparisonwiththeeffectsofotherschoolsinthesamesample.Thisdefinitionisnotonlyfocusingontheacademyprogress,alsoonthestudents’attitudestolearningandotherimportantoutcomes.However,thisdefinitionrefersspeciallytoacademicattainmentlevelofattainmentincomparisonwithsimilarstudentsinotherschools.Forcalculatingthevalueaddedcomponent,accuratebaselineinformationaboutstudent'spriorattainmentisveryimportant,sothevalueaddedmethodscancomparesoutcomeafteradjustingforvaryingintakeachievement.Theconceptofvaluedaddedisnotonlyanindicatorofschooleffectiveness,alsoatoolforschoolself—evaluation.Thevalueaddedaschoolcontributedtoindividualstudenthasthefollowingpurpose(Thomasl998):※Itoffersafairerandmoremeaningfulwayofpresentingschoolexaminationresult;※Itisatoolthatcanprovidebothdetailedandsummarydatathataschoolcananalysisaspartofitsself—evaluation;※Itcanbeusedtoexaminetrendsinvalueaddedperformanceovertime.Inrelationtoschoolimprovementinitiatives;※Itprovideperformancemeasuresthatcanbecontrastedagainstothertypesofdataavailableinschoolssuchasmeasuresofpupils’affectiveorvocationaloutcomesorinformationabouttheviewsofkeygroupsobtainedusingteacher,parentandpupilquestionnaires;※Itcanprovideadditionalguidanceinmonitoringandtargetsettingforindividualstudentsandspecificgroupsofstudents.Someresultsfrompreviouslystudies.Comparisonbetweenschoolvalueaddedforoverallattainmentandsubjectsshowschoolsvarydifferentlyacrossdifferentareaofacademicattainment.Thomas(1996)foundcorrelationbetweenvalueaddedscoresforEnglishandmathematicsis0.46.Otherresearch(Thomasl995)foundthesecorrelationbetweendifferentsubjects(English,Englishliterature,math,science,F(xiàn)renchandhistory)rangefrom0.20to0.72,thismeansmanyschoolshavemixedresultsfordifferentdepartments.onlyafewhastheconsistentresultsfordifferentsubjects.Thesefindingssuggeststronglytheneedtolookatschools’valueaddedperformanceindetailnotonlyacrossdifferentacademicsubjectsassignificantsubjectdifferencesmaybemaskedbyoverallattainmentinsomeschool.Studiesshow,onaverage,somedifferentlevelsofacademicperformance/progressbetweenboysandgirls.Yang’s(1999)researchshowgirlsperformbetterthanboysinKS1reading,KS1writing,butworseinMathematicsandSciences;Thomas(1996)findgirlsperformbetterintotalscoreandEnglishlanguage.Goldstein’s(1996)researchalsoshowsasmalldifferenteffectforboysincomparisontogirls.Student’sageseemshowsomeeffectontheirsattainment.Twostudiesshowoldstudentsmakemoreprogressintheirstudies(Thomasetal.,l996,1997),‘0naverage,theoldestl5+pupilsfwithbirthdaysinSeptember/October)attainedapproximately2GCSEpointsmorethantheyoungestl5+pupils(withbirthdaysinJuly/August)(Thomasl996,P.12)’.Studiesonpupilssocial-economicstatusshowstudentsentitledwithfreemeal,whichisacomprehensiveindicatoroffamilyeconomicclass,seemperformworsethanthosewithoutfreemealonaverage(Yanget、al.,l999,ThomasS,etal.,l997,1999).Thesefindingscouldbeusefullyinterpretedasmeaningthatmostschoolshavedifferentlevelsofeffectivenessforpupilsfrommoreorlesseconomicallyadvantagedbackground.Pupilswithdifferentethnicbackgroundalsoshowdifferentgainsinacademicattainment(Nuttalletal.,l989,Thomasl996,Sammonsl999).‘Incomparisontothewhitegroup,otherethnicgroupsobtainedsignificantlyhighscores,giventheattainmentonentrytoschoolhavebeentakenintoaccount.(Thomasetal.,1996.P.12)’.ButsomestudiesdonotfindevidenceofsignificantdifferenceinprogressinsomesubjectforsomeethnicgroupSammonsl999).Theseneedfurtherstudyandhighlightagaintheimportanceofdetailedanalysisinexploringtheaffectingfactoronstudents’improvement.Inshort,student'spriorattainmenthasthelargestimpactontheirlaterattainment,theadjustmentusinggenderorsocial—economicstatusaresmallbycomparison.Nuttall’s(1989)studysuggestvariabilityinhighabilitypupilsbetweenschoolsismuchlargerthanthatoflowabilitypupils,Thomas(1993)foundcorrelationbetweenvalueaddedscoreforhighestandlowestabilitystudentrangefrom0.73to0.76fordifferentsubject.Therecentlystudiesusingfinelygradedpriorattainmentmeasuresinbothinnercityareas(Goldsteinetal.,1993)andincountyLEAs(Thomas,etal.,l996)havealsoestablishedsignificantdifferentialsecondaryschooleffects.Theseevidencepointthatsomeschoolarenotequallyeffectiveinpromotingtheattainmentofallpupilswithdifferentpriorattainment,irrespectiveoftheirpreviousstrengthsorweaknesses.StudiesonstabilityandconsistenciesofschooleffectivenessshowschooleffectsaremoststablefortotalGCSEperformancescorebutthedepartmenteffectsarelessstableovertime.Thecorrelationbetweenschooleffectacrosstimeforperformanceindifferentacademicsubjectsisfrom0.38to0.92(Thomasetal.,l997),andonlyaverylowpercentageofschoolcanmaintainthesameposition,says,alwayseffectiveorineffective,fortotalscoreandsubjectscorethrough3years.Thesesuggestthatweshouldlookresultsortrendsoverseveralyearsinschoolevaluationpractice.Studiesaboutschoolbackgroundvariable’seffectsonstudents’attainmentgainedshowsomeschoollevelvariablehavelittleeffectonchildren’sprogress.Yang’s(1999)researchshowsthecoefficientforvariableofpercentageofstudentsentitledwithfreemealinmodel’sfixedpartisjust-0.007.Givenothervariablecontrolled,somestudiesfindwhenpriorattainmentdataareavailablenoschoolcontextfactorsaresignificantandthefitofthemodelissubstantiallyimproved(Thomasetal.1996).Therearesomeresearchonschooleffectivenessandschoolimprovementareainchina(Cheng1996,Wang1998),butmostofthemfocusontherationalthought,fewresearchbasedonevidenceanalysisisfound.ThispilotstudyaimstogiveatentativeanalysisforsomedatafromseveralBeijingseniorsecondaryschools,usingmultilevelanalysistechnique,thencomparetheresultwiththepreviouslystudiesintermofinternationalview.BeingsupportedbyBritishCouncil,forthefeedbackpurposetoschool,thisstudywillexploretheimplicationofvalueaddedmeasurementmethodineducationpracticeinBeijingarea.TheanalysisofvaluedaddedmeasuerDataThedatacomefromseveralseniorsecondaryschoolsinBeijingCity,China,whichrefertothestudentswholeftseniorsecondaryschoolinl998.Originallythereare7schools’dataavailable,butsinceoneschooldidnotprovideitsstudents’priorattainmentinformation,datafromthisschoolisonlyincludedinthebeginninganalysis.Theother6schooldataareincludedinthefinalmultilevelanalysis.Thecasehavingmissingvaluecannotbeincludedintheanalysisautomaticallywhenmultilevelmodelarefitted,so,only617casecanenterthefinalanalysisinourstudy,contrastwiththeoriginall051caseinthesample,thatmeansthesamplesizeisabitsmall.Descriptiveanalysisisavailableinotherpaper.Thevariablesinsampledatabaserefertoeachstudent’sage,gender,ethnicity,parents’occupation,student’stype,major,andtheirdifferentattainmentofdifferentsubjectsindifferenttime,etal..Sincedifferentstudentsfromdifferentdistricthavedifferentsubjectpriorattainment,onlythreecoresubjects,Chines,Math,Englishandthetotalscoresfornationalexamareincludedinthecurrentanalysis.Studentsareclassifiedtolowband(bottom25%)middleband(Middle50%)andhighband(upper25%)foranalysisaccordingtothesumoftheirChinese,mathandEnglishscorewhenleavingJuniorsecondaryschool.Schoolbackgroundvariableincludespercentageoflowbandstudents,ratioofteacher/pupil,schooltype,whichisatermformerlycalledandnotusednowasacrudeindicatorofcomprehensiveschoolinputandteachinglevel.Nootherbackgroundvariablesavailablethistime.Age,ratioofteacher/pupilandattainmentscoresarenormalized(Mean0,standarddeviationl)fortheanalysispurpose.(Goldsteinetal.,l999).AnalysismethodAdvancedMultilevelmodelingisusedasthemethodofanalysis(Goldstein,1995,1999).Theadvantageofmultilevelmodelingisnotonlythatitcancapitalizeonthehierarchicalstructureofthedata,alsothatthistechniquecanbeusedtolookatpotentiallyinterestingdifferences,suchasthosebetweentheperformanceofdifferentstudenttypehavingtakenintoaccountoftheirpriorattainment.Theanalysiscanprovideanestimateofresidual(valueaddedscore)foreachschoolafterestablishedeveryvariable’simpact.a(chǎn)measureofresidualplotwith95%confidenceintervalforeachschoolcanbeattachedforcomparinggraphically(Goldsteinl995).Fourmeasuresofstudents’performanceinnationalexamasoutputvariableareanalysed:thetotalscore,theChinesescore,theEnglishscore,themathscore,theircorrespondingsubjectsscoresinleavingJuniorsecondaryschoolarefittedaspriorattainment.Sincethereareonly6school,whichmeansnumberof2ndlevelisinsufficient,therearemanycomputingproblemsinourmultilevelanalysis,soallvariablesenteringthemodelareonlysetinfixedpartsexceptconstantvariable.Variablescontributingnosignificantchangeofgoodness—fittothemodelorhavingnosignificantfixedpartcoefficientwillnotbeincludedinmostequationformostcase.Differentmodelsfordifferentacademicperformancearefittedfirstly,andthenamultivariatemodelfortotalscoreandmathisfitted.Themodelsareasfollow:1.Interceptonlymodel:thisisthebasicmodelthatprovidesbasicanalysisandcomparingbaselineforotheranalysis.Onlytheconstantvariableisincludedintheequationandsetrandomatbothschoolandstudentlevel.2.Priorattainmentonlymodel:onlysinglepriorattainmentorcombinedpriorattainmentisfittedinthemodel,allpriorattainmentissetonlyinthefixedpart.3.Studentbackgroundonlymodel:onlyStudentbackgroundvariableisfittedinthemodel,allaresetonlyinthefixedpart.4.Schoolbackgroundonlymodel:onlyschoolbackgroundvariableisfittedinthemodel,allaresetonlyinthefixedpart.5.Priorattainment+studentbackgroundmodel:thecombinedpriorattainment+studentbackgroundvariablesarefittedinthemodel,allaresetonlyinthefixedpart.6.Priorattainment+schoolbackgroundmodel:thecombinedpriorattainment+schoolbackgroundvariablesarefittedinthemodel.a(chǎn)llaresetonlyinthefixedpart.7.Fullvariablemodel:allvariablesarefittedinthemodel.a(chǎn)llaresetonlyinthefixedpart.ThenewMLWin(visionl.1)softwareisusedforourstudy.Onefeatureofthisnewvisionsoftwareistoprovidedetailedsimulationresultfortheanalysis(Goldsteinetal.,l999).Thesimulationtechniquecanmakeaccurateinferencesonthebasisofsimulatedparameterestimate,thisisusefultohavemethodsforproducingaccurateintervalestimateswithsmallsamples.Aftereachmodelwasfitted,threesimulationmethodareused:Gibbssampling(MLWindefaultoption),MetropolisHastingSampling(univariateMHforfixedandrandomeffectsparameterisset,theotheroptionisMLWindefault),Bootstrapestimation(MLWindefaultoption).AssaidintheMLWinmanual.a(chǎn)llsimulationmethodsarenotusedformodelexploration,justforobtainingunbiasedestimatesandaccurateintervalestimatesatthefinalstagesofanalysis.Itisneedtotrydifferentsimulationmethodstoensurestableconclusion(Goldsteinetal.,l999).Inouranalysis,resultsfromthreesimulationmethodshowsomekindconsistencyforfixedpartparameters,soonlyresultsfromMHmethodsarereported(seeappendixl8—21)togetherwithMlwindefaultIGLSanalysisresults.Sinceweonlyhavesixschooldataavailable,theanalysisshowschoollevelparameterhavinglargestandarderror,whichmeansthesamplingerrorislarge.Thesimulationresultbasedontheseschoollevelparameterswithlargesamplingerrorisuncertaintyforfurtheranalysis.SothecomparisonandanalysisarebasedonIGLSresult.ThefindingDescriptiveanalysesofeachvariableshowstudent’sintakeacademicattainmentsexceptChinesesubjectaredifferentindifferentschool.Afterthedescriptiveanalysis,eachvariablementionedaboveisfittedforthemodelseparately.Ethnic,majorandratioofteacher/pupildonotshowsignificanteffectonmodelgoodness-fitchange,sothesevariablesaren’tincludedinthelatermultilevelanalysis.Student’stype,parents’Jobhavemanymissingvalue.theyarenotincludedinthelatermultilevelanalysisformakinggooduseofthepriorattainmentinformation.Schooltypehavesomeeffectformodelgoodness—fitchange,butwhenincludedwithothervariable,therewillnosignificanteffect,evencausecomputingerrorprobablyfromthesmallsamplesize.wedonotincludeitinthelatermodeltoo.Finallyonlystudentsacademicscore,age,genderandpercentageoflowbandstudentareincludedinthelastmultilevelmodelsetting.Themultilevelanalysisresultsareshownintableltotable4.(P128~P131)Fortotalscore(tablel),withoutincludingpriorattainmentinthemodel,bothpupilbackgroundandschoolbackgroundvariablecanexplainsomepercentageforthemodelgoodness—fit.Pupilbackgroundvariablesseemcontributemoretothemodelgoodness—fitchangethanschoolcontextvariable,causing16%decreaseingoodness—fitcomparingwiththeinterceptonlymodel.Thepriorattainmentcanexplainthemajorityofvarianceofmodel,itcause22.77%decreaseinmodelgoodness—fit.Sinceonlypercentageoflowbandstudentbeingschoollevelvariableisincludedinthefullmodel,anditscoefficientinfixedpartshowsnosignificance.Thismeansfortotalscore,schoollevelvariableinourstudymakeslesssignificanteffectonpupilattainment,afterpriorattainmentandpupillevelvariablearetakenintoaccount.Fromtheintra—schoolcorrelation(0.1240—0.2863fordifferentmodel)wecanconcludethereisconsiderablevariationbetweenschool’sperformanceintotalscore.Despitethereductionsinvarianceinschool1evelinsomemodel.comparingwithinterceptonlymodel,thereisstillaschooleffecteventhemostvariableshavebeentakenintoaccount,forthefullmodel.themeanofschoollevelvarianceis0.146.Someaveragedifferenteffectsbetweendifferentgroupsarefound.Boysperformancebetterthangirls,thefixedpartcoefficientinfullmodelis0.232.Elderstudentsseemperformanceworsethantheyounger,thefixedpartcoefficientinfullmodelforageis-0.175.FormathandEnglishsubject(table24),thesimilartrendisfound.Pupilbackgroundvariablesandschoolbackgroundvariablehavesomekindeffectsonstudentattainment,thepriorattainmentcancausesignificantdecreaseinmodelgoodness—fit,especiallyinthefullmodel.AnalysisforChineseattainmentshowstheschoollevelvarianceisoforfullmodelandpupilbackground+priorattainmentmodel,alsoextremelysmallinothermodel,especialinthemodelsincludingpriorattainment.Thismeanswedonotfindtheseschoolshavedifferenteffectinstudent’sChinesesubjectstudy.FromthedescriptiveanalysiswedonotfinddifferenceforpriorandlaterChineseattainmentbetweenschools,thiswouldbeonereason,andalsonoschooleffectsarefoundinChineseattainmentthistime.thereasonneedfurtherstudy.Fromtheresultswecansayschoolsstillhavesomekinddifferenteffectonstudent’ssubjectacademicattainment.Astotheeffectsfrompriorattainment,mathseemshavelittleimpactonpupil’sChineseandEnglishattainment.ChineseandEnglish,especialEnglishpriorattainment,havesignificanteffectonstudent’slateracademicoutcome.Ageseemtobeanegativevariableaffectingstudent’sattainmenthere.Boyseemsdobetterinmathsciencethangirldo,butworseinEnglish.Thecurrentschoolbackgroundvariableseemstohavenoeffectonstudent’sacademicattainmentduringthe3-yearstudy,althoughthecoefficientislarge,theestimatestandarderrorislargeinallfullmodelscomparingwithotherexplanatoryvariables.WetrytosetstudentbandvariableinstudentlevelinallfullmodelandfindhighbandvariablevarianceinstudentlevelisnegativeforallandsignificantlynegativeforEnglishandChinese,thismeansstudentswithhighpriorattainmenttrendtovarylessintheirlaterattainment.Herewetrytoanalysisthisdatausingmultivariatemethod,becauseofthecomputingerrorcausedbythesmallsamplesize,onlyamultivariatemodelincludingtotalscoreandmathmodelisfittedatlast.Therearesomesimilartrendswithpreviouslyanalysis,ageseemhavenegativeeffectonstudent’sstudy,especiallyfortotalscore,boydoesbetterthangirlhere.Schoolsstillhavedifferenteffectonstudentsinthesetwoacademicattainment.thevarianceatschoollevelis0.260and0.178respectively,varianceatstudentlevelisstilllarge,hereitis0.159and0.110formathandtotalscorerespectively.ThecorrelationbetweenthesetwoacademicscoreiS0.978and0.814atschoollevelandstudentlevelrespectively.Forthefeedbacktoeachschool,differentresidualplotwith95%confidentialintervalispresented.AccordingtoGoldstein,formoreaccuratecomparisonbetweenanytwoschools,weusel.39asSDmultiplier(Goldsteinetal.,l995).Residualscatterplotsforcomparisonbetweentotalscore,mathandEnglishareavailabletoo.Fordetailedanalysis,therawscorescatterplotsfordifferentattainmentareprovidedtoeachschoo1.Eachschool’sresultsarehighlightedforidentification.ForChinese,sincetheschoollevelvarianceis0inthisstudy,noresidualplotforChinesesubjectisavailablehere.Fromtheplot,wefindschoolshavedifferentresidualpositionacrossdifferentacademicattainmentexceptChinese.Fromtherawscorescatterplot,wecanfoundsomeschoolhaveoutliers,sayextremelyvalue.Theseoutliersmustaffectschool’sresidualposition,wedon’tknowhowmuchthiseffectis,sincewedonotdothediagnosticexploreshere.Theanalysisfortheseoutliersshouldbeveryusefulforeducationpractice,especiallyforsomecasestudy.Althoughwedidnotcomputetheresidualcorrelationbetweendifferentmodelfordifferentsubject,theresidualplotsherestronglyshowthedifferentschoolshavedifferenteffectsfordifferentsubjects,notincludingChinese.Thesecanbeusedasschoolevaluationtoolineducationpractice.

DiscussionandconclusionFromaboveanalysis,somesimilartrendsarefound,comparingwithotherstudies(Thomasetal.,l994,1997,1997,1999,Yangetal.,l999,Sammonsl999,Goldsteinetal.,l996).Onaverage,genderhavesomeeffectonstudent’sstudying;priorattainmentcanexplainthelargepartofthemodelvariance;schoolcontexteffectdecreasewhenpupilbackgroundvariableorpriorattainmentaretakenintoaccount.Hertheoptimalmodelistakingallvariables,includingpriorattainment,schoolcontextvariables.studentbackgroundvariables,intoaccountotherthantakingonlyonepartoftheseaffectingvariable,becauseitfitsthemodelbest.Theanalysisresultsstronglysupportthatschoolshavedifferenteffectondifferentstudentgroupfordifferentsubject,exceptChinese.Thesestrengthentheneedstousearangofdifferentvalueaddedmeasureforparticulargroupofstudents,forindividualdepartmentinthemonitoringandevaluatingprocess,evenfordifferentpupilcohortsandpointsintime(Thomasetal.,l999).Thevalue—addedmeasureforschoolevaluationshouldbemulti—facetanddynamic.ThisresearchisdifferentformmoststudiesinUkinsomefacets.Intheirstudies,student’spriorattainmentissomecomposite/crudeindicator.suchastheLondonreadingtest,thesocialeconomicstatusindicator,suchasfreemealentitlement,isnotaaccurateindicatoreither.‘Theusingofacrudegroupedmeasureratherthanafinelydifferentiatedmeasureofpriorattainmentsmayaffectfindingsaboutthenatureandextendofdifferentialschooleffectiveness’(Thomasetal.1997,p.454).ChinesesecondaryeducationsystemisdifferentfromUK.StudentsinJuniorsecondaryschoolstudythesamekindsubjectsasinseniorsecondaryschool,sosubjectscoreinJuniorsecondaryschoolshouldbeamoreaccuratemeasureofpriorattainmentinpredicatingthefutureattainmentinsamesubjectthanthecomposite/substituteindicator.Thisistheadvantageofourstudy.Somestudiesfoundolderpupildobetterthanyoungerintermsofbothrawandprogressmeasuresofattainment(Thomasetal.,l996,Sammonsl999),ourstudyfoundthecontrastresult,isthisbecausethedifferentculturebackground,Orresultsfromdifferenteducationsystem?Theunderlyingreasonneedfurtherstudy.GendereffectinourstudyalsoseemdifferentfromsomeUKstudyinsomesubject,fortotalscoreandmath,boydobetterthangirl;forEnglish,girldobetterthanboy,thelaterisinlinewithUK’sstudies.Itisalmostnostrongevidencethatparents’occupationandstudenttypehavesignificanteffectonstudentstudying.UnlikethestudyinUK,nodifferencewasfoundbetweendifferentethnicgroup(Sammonsl999,Thomasetal.,1996).Thisshouldbetheresultofculturebackgrounddifferenceorotherunknownreason,probablyeducationpolicy.Schoolcontextvariableshavesomeeffectsonstudents’studywhenfittedinthemodelonly,butwhenthepriorattainmentarefittedinthemodel,theseeffectbecomenosignificant,beinginlinewithotherstudies.‘Thisindicatethatschoolcontextfactorsmayonlybesignificantinpredicatingpupiloutcomewhenrichandwiderangingpupilleveldataarelacking(Thomasetal.,l996,pl83)’.HerewedonotfoundschooleffectsonChinesestudy.isthisbecauseoursmallsamplesizeorthereisreallynoschooleffectonChinesestudyorotherunknownreason?Thereasonneedfurtherstudy.However,formthispilotstudy,wecansayvalueadded

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論