2023屆內(nèi)蒙古通遼市重點(diǎn)中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第1頁(yè)
2023屆內(nèi)蒙古通遼市重點(diǎn)中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第2頁(yè)
2023屆內(nèi)蒙古通遼市重點(diǎn)中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第3頁(yè)
2023屆內(nèi)蒙古通遼市重點(diǎn)中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第4頁(yè)
2023屆內(nèi)蒙古通遼市重點(diǎn)中學(xué)高三第三次測(cè)評(píng)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.32.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.3.一個(gè)正四棱錐形骨架的底邊邊長(zhǎng)為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.4.某幾何體的三視圖如圖所示,則該幾何體的最長(zhǎng)棱的長(zhǎng)為()A. B. C. D.5.2019年10月1日,為了慶祝中華人民共和國(guó)成立70周年,小明、小紅、小金三人以國(guó)慶為主題各自獨(dú)立完成一幅十字繡贈(zèng)送給當(dāng)?shù)氐拇逦瘯?huì),這三幅十字繡分別命名為“鴻福齊天”、“國(guó)富民強(qiáng)”、“興國(guó)之路”,為了弄清“國(guó)富民強(qiáng)”這一作品是誰(shuí)制作的,村支書對(duì)三人進(jìn)行了問(wèn)話,得到回復(fù)如下:小明說(shuō):“鴻福齊天”是我制作的;小紅說(shuō):“國(guó)富民強(qiáng)”不是小明制作的,就是我制作的;小金說(shuō):“興國(guó)之路”不是我制作的,若三人的說(shuō)法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明6.已知為虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B. C. D.7.達(dá)芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來(lái)讓無(wú)數(shù)觀賞者人迷.某業(yè)余愛好者對(duì)《蒙娜麗莎》的縮小影像作品進(jìn)行了粗略測(cè)繪,將畫中女子的嘴唇近似看作一個(gè)圓弧,在嘴角處作圓弧的切線,兩條切線交于點(diǎn),測(cè)得如下數(shù)據(jù):(其中).根據(jù)測(cè)量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角大約等于()A. B. C. D.8.我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,,,那么在不超過(guò)18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為()A. B. C. D.9.對(duì)于函數(shù),定義滿足的實(shí)數(shù)為的不動(dòng)點(diǎn),設(shè),其中且,若有且僅有一個(gè)不動(dòng)點(diǎn),則的取值范圍是()A.或 B.C.或 D.10.己知函數(shù)若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),則實(shí)數(shù)的取值范圍是()A. B. C. D.11.2020年是脫貧攻堅(jiān)決戰(zhàn)決勝之年,某市為早日實(shí)現(xiàn)目標(biāo),現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個(gè)貧困縣扶貧,要求每個(gè)貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種12.在平面直角坐標(biāo)系中,已知是圓上兩個(gè)動(dòng)點(diǎn),且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項(xiàng)和恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù),則__________;__________.14.的展開式中的系數(shù)為____.15.某高校開展安全教育活動(dòng),安排6名老師到4個(gè)班進(jìn)行講解,要求1班和2班各安排一名老師,其余兩個(gè)班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.16.如圖所示,在正三棱柱中,是的中點(diǎn),,則異面直線與所成的角為____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知矩陣不存在逆矩陣,且非零特低值對(duì)應(yīng)的一個(gè)特征向量,求的值.18.(12分)正項(xiàng)數(shù)列的前n項(xiàng)和Sn滿足:(1)求數(shù)列的通項(xiàng)公式;(2)令,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn<.19.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對(duì)任意都有,求實(shí)數(shù)的取值范圍.20.(12分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.21.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.22.(10分)設(shè)為實(shí)數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡(jiǎn)得,所以.故選:B【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.2、B【解析】

根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.3、B【解析】

根據(jù)正四棱錐底邊邊長(zhǎng)為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長(zhǎng)為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點(diǎn)睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.4、D【解析】

先根據(jù)三視圖還原幾何體是一個(gè)四棱錐,根據(jù)三視圖的數(shù)據(jù),計(jì)算各棱的長(zhǎng)度.【詳解】根據(jù)三視圖可知,幾何體是一個(gè)四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長(zhǎng)棱的長(zhǎng)為故選:D【點(diǎn)睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.5、B【解析】

將三個(gè)人制作的所有情況列舉出來(lái),再一一論證.【詳解】依題意,三個(gè)人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國(guó)富民強(qiáng)小紅小金小金小明小紅小明興國(guó)之路小金小紅小明小金小明小紅若小明的說(shuō)法正確,則均不滿足;若小紅的說(shuō)法正確,則4滿足;若小金的說(shuō)法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點(diǎn)睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎(chǔ)題.6、A【解析】分析:題設(shè)中復(fù)數(shù)滿足的等式可以化為,利用復(fù)數(shù)的四則運(yùn)算可以求出.詳解:由題設(shè)有,故,故選A.點(diǎn)睛:本題考查復(fù)數(shù)的四則運(yùn)算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.7、A【解析】

由已知,設(shè).可得.于是可得,進(jìn)而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角為.則,.故選:A.【點(diǎn)睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.8、B【解析】

先求出從不超過(guò)18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過(guò)18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點(diǎn)睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.9、C【解析】

根據(jù)不動(dòng)點(diǎn)的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時(shí),,則在內(nèi)單調(diào)遞增;當(dāng)時(shí),,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個(gè)不動(dòng)點(diǎn),可得得或,解得或.故選:C【點(diǎn)睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.10、B【解析】

考慮當(dāng)時(shí),有兩個(gè)不同的實(shí)數(shù)解,令,則有兩個(gè)不同的零點(diǎn),利用導(dǎo)數(shù)和零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榈膱D象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),所以時(shí),有兩個(gè)不同的實(shí)數(shù)解.令,則在有兩個(gè)不同的零點(diǎn).又,當(dāng)時(shí),,故在上為增函數(shù),在上至多一個(gè)零點(diǎn),舍.當(dāng)時(shí),若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因?yàn)橛袃蓚€(gè)不同的零點(diǎn),所以,解得.又當(dāng)時(shí),且,故在上存在一個(gè)零點(diǎn).又,其中.令,則,當(dāng)時(shí),,故為減函數(shù),所以即.因?yàn)?,所以在上也存在一個(gè)零點(diǎn).綜上,當(dāng)時(shí),有兩個(gè)不同的零點(diǎn).故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),一般地,較為復(fù)雜的函數(shù)的零點(diǎn),必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)存在定理說(shuō)明零點(diǎn)的存在性,本題屬于難題.11、B【解析】

分成甲單獨(dú)到縣和甲與另一人一同到縣兩種情況進(jìn)行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨(dú)到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點(diǎn)睛】本小題主要考查簡(jiǎn)答排列組合的計(jì)算,屬于基礎(chǔ)題.12、B【解析】

由于到直線的距離和等于中點(diǎn)到此直線距離的二倍,所以只需求中點(diǎn)到此直線距離的最大值即可。再得到中點(diǎn)的軌跡是圓,再通過(guò)此圓的圓心到直線距離,半徑和中點(diǎn)到此直線距離的最大值的關(guān)系可以求出。再通過(guò)裂項(xiàng)的方法求的前項(xiàng)和,即可通過(guò)不等式來(lái)求解的取值范圍.【詳解】由,得,.設(shè)線段的中點(diǎn),則,在圓上,到直線的距離之和等于點(diǎn)到該直線的距離的兩倍,點(diǎn)到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點(diǎn)睛】本題考查了向量數(shù)量積,點(diǎn)到直線的距離,數(shù)列求和等知識(shí),是一道不錯(cuò)的綜合題.二、填空題:本題共4小題,每小題5分,共20分。13、01【解析】

根據(jù)分段函數(shù)解析式,代入即可求解.【詳解】函數(shù),所以,.故答案為:0;1.【點(diǎn)睛】本題考查了分段函數(shù)求值的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.14、28【解析】

將已知式轉(zhuǎn)化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項(xiàng)式展開式可求得其值.【詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【點(diǎn)睛】本題考查二項(xiàng)式展開式中的某特定項(xiàng)的系數(shù),關(guān)鍵在于將原表達(dá)式化簡(jiǎn)將三項(xiàng)的冪的形式轉(zhuǎn)化為可求的二項(xiàng)式的形式,屬于基礎(chǔ)題.15、156【解析】

先考慮每班安排的老師人數(shù),然后計(jì)算出對(duì)應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級(jí)的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個(gè)班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個(gè)班,共有種,所以種.故答案為:.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,難度一般.對(duì)于分組的問(wèn)題,首先確定每組的數(shù)量,對(duì)于其中特殊元素,可通過(guò)“正難則反”的思想進(jìn)行分析.16、【解析】

要求兩條異面直線所成的角,需要通過(guò)見中點(diǎn)找中點(diǎn)的方法,找出邊的中點(diǎn),連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點(diǎn)E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長(zhǎng)為,易算得∴在∴故答案為【點(diǎn)睛】本題考查異面直線所成的角,本題是一個(gè)典型的異面直線所成的角的問(wèn)題,解答時(shí)也是應(yīng)用典型的見中點(diǎn)找中點(diǎn)的方法,注意求角的三個(gè)環(huán)節(jié),一畫,二證,三求.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、【解析】

由不存在逆矩陣,可得,再利用特征多項(xiàng)式求出特征值3,0,,利用矩陣乘法運(yùn)算即可.【詳解】因?yàn)椴淮嬖谀婢仃?,,所?矩陣的特征多項(xiàng)式為,令,則或,所以,即,所以,所以【點(diǎn)睛】本題考查矩陣的乘法及特征值、特征向量有關(guān)的問(wèn)題,考查學(xué)生的運(yùn)算能力,是一道容易題.18、(1)(2)見解析【解析】

(1)因?yàn)閿?shù)列的前項(xiàng)和滿足:,所以當(dāng)時(shí),,即解得或,因?yàn)閿?shù)列都是正項(xiàng),所以,因?yàn)?,所以,解得或,因?yàn)閿?shù)列都是正項(xiàng),所以,當(dāng)時(shí),有,所以,解得,當(dāng)時(shí),,符合所以數(shù)列的通項(xiàng)公式,;(2)因?yàn)椋?,所以?shù)列的前項(xiàng)和為:,當(dāng)時(shí),有,所以,所以對(duì)于任意,數(shù)列的前項(xiàng)和.19、(1)(2)【解析】

利用零點(diǎn)分區(qū)間法,去掉絕對(duì)值符號(hào)分組討論求并集,對(duì)恒成立,則,由三角不等式,得求解【詳解】解:當(dāng)時(shí),不等式即為,可得或或,解得或或,則原不等式的解集為若對(duì)任意、都有,即為,由,當(dāng)取得等號(hào),則,由,可得,則的取值范圍是【點(diǎn)睛】本題考查含有兩個(gè)絕對(duì)值符號(hào)的不等式解法及利用三角不等式解恒成立問(wèn)題.(1)含有兩個(gè)絕對(duì)值符號(hào)的不等式常用解法可用零點(diǎn)分區(qū)間法去掉絕對(duì)值符號(hào),將其轉(zhuǎn)化為與之等價(jià)的不含絕對(duì)值符號(hào)的不等式(組)求解(2)利用三角不等式把不等式恒成立問(wèn)題轉(zhuǎn)化為函數(shù)最值問(wèn)題.20、(1)2;(2)見解析【解析】

(1)將化簡(jiǎn)為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,利用基本不等式和放縮法求最值,考查化簡(jiǎn)計(jì)算能力.21、(1)證明見解析(2)【解析】

(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因?yàn)槠矫?,所以平面平?易知,且為的中點(diǎn),所以,所以平面.(2)解:由(1)可知,,且四邊形為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論