2022-2023學年黔西南市重點中學中考聯考數學試題含解析_第1頁
2022-2023學年黔西南市重點中學中考聯考數學試題含解析_第2頁
2022-2023學年黔西南市重點中學中考聯考數學試題含解析_第3頁
2022-2023學年黔西南市重點中學中考聯考數學試題含解析_第4頁
2022-2023學年黔西南市重點中學中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某校八年級兩個班,各選派10名學生參加學校舉行的“古詩詞”大賽,各參賽選手成績的數據分析如表所示,則以下判斷錯誤的是()班級平均數中位數眾數方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的總分高于八(1)班B.八(2)班的成績比八(1)班穩(wěn)定C.兩個班的最高分在八(2)班D.八(2)班的成績集中在中上游2.下列說法正確的是()A.2a2b與–2b2a的和為0B.的系數是,次數是4次C.2x2y–3y2–1是3次3項式D.x2y3與–是同類項3.根據《九章算術》的記載中國人最早使用負數,下列負數中最大的是()A.-1 B.-12 C.-4.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=25.下面的幾何圖形是由四個相同的小正方體搭成的,其中主視圖和左視圖相同的是()A.B.C.D.6.下列圖案是軸對稱圖形的是()A. B. C. D.7.反比例函數y=1-6txA.t<16B.t>16C.t≤18.如圖,將一塊三角板的直角頂點放在直尺的一邊上,當∠2=38°時,∠1=()A.52° B.38° C.42° D.60°9.已知a為整數,且<a<,則a等于A.1 B.2 C.3 D.410.如圖是一個幾何體的主視圖和俯視圖,則這個幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長方體二、填空題(本大題共6個小題,每小題3分,共18分)11.要使分式有意義,則x的取值范圍為_________.12.不等式組的解集是__________.13.長城的總長大約為6700000m,將數6700000用科學記數法表示為______14.為參加2018年“宜賓市初中畢業(yè)生升學體育考試”,小聰同學每天進行立定跳遠練習,并記錄下其中7天的最好成績(單位:m)分別為:2.21,2.12,2.1,2.39,2.1,2.40,2.1.這組數據的中位數和眾數分別是_____.15.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.16.關于x的一元二次方程ax2﹣x﹣=0有實數根,則a的取值范圍為________.三、解答題(共8題,共72分)17.(8分)某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查,根據調查結果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.根據以上信息,解答下列問題:(1)這次調查一共抽取了名學生,其中安全意識為“很強”的學生占被調查學生總數的百分比是;(2)請將條形統(tǒng)計圖補充完整;(3)該校有1800名學生,現要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據調查結果,估計全校需要強化安全教育的學生約有名.18.(8分)如圖,⊙O的直徑AD長為6,AB是弦,CD∥AB,∠A=30°,且CD=.(1)求∠C的度數;(2)求證:BC是⊙O的切線.19.(8分)如圖,在矩形ABCD中,AB═2,AD=,P是BC邊上的一點,且BP=2CP.(1)用尺規(guī)在圖①中作出CD邊上的中點E,連接AE、BE(保留作圖痕跡,不寫作法);(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說明理由;(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點F,連接AP,不添加輔助線,△PFB能否由都經過P點的兩次變換與△PAE組成一個等腰三角形?如果能,說明理由,并寫出兩種方法(指出對稱軸、旋轉中心、旋轉方向和平移距離)20.(8分)如圖,經過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關于直線x=2對稱,求拋物線的函數表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.21.(8分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.22.(10分)如圖是小朋友蕩秋千的側面示意圖,靜止時秋千位于鉛垂線BD上,轉軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當他從A處擺動到A′處時,有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.23.(12分)如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.(1)求證:△BDE≌△BCE;(2)試判斷四邊形ABED的形狀,并說明理由.24.如圖,直線y=2x+6與反比例函數y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數的圖像于點M,交AB于點N,連接BM.求m的值和反比例函數的表達式;直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

直接利用表格中數據,結合方差的定義以及算術平均數、中位數、眾數得出答案.【詳解】A選項:八(2)班的平均分高于八(1)班且人數相同,所以八(2)班的總分高于八(1)班,正確;

B選項:八(2)班的方差比八(1)班小,所以八(2)班的成績比八(1)班穩(wěn)定,正確;

C選項:兩個班的最高分無法判斷出現在哪個班,錯誤;

D選項:八(2)班的中位數高于八(1)班,所以八(2)班的成績集中在中上游,正確;

故選C.【點睛】考查了方差的定義以及算術平均數、中位數、眾數,利用表格獲取正確的信息是解題關鍵.2、C【解析】

根據多項式的項數和次數及單項式的系數和次數、同類項的定義逐一判斷可得.【詳解】A、2a2b與-2b2a不是同類項,不能合并,此選項錯誤;B、πa2b的系數是π,次數是3次,此選項錯誤;C、2x2y-3y2-1是3次3項式,此選項正確;D、x2y3與﹣相同字母的次數不同,不是同類項,此選項錯誤;故選C.【點睛】本題主要考查多項式、單項式、同類項,解題的關鍵是掌握多項式的項數和次數及單項式的系數和次數、同類項的定義.3、B【解析】

根據兩個負數,絕對值大的反而小比較.【詳解】解:∵?12>?1>?2∴負數中最大的是?12故選:B.【點睛】本題考查了實數大小的比較,解題的關鍵是知道正數大于0,0大于負數,兩個負數,絕對值大的反而小.4、B【解析】

根據拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.5、C【解析】試題分析:觀察可得,只有選項C的主視圖和左視圖相同,都為,故答案選C.考點:簡單幾何體的三視圖.6、C【解析】解:A.此圖形不是軸對稱圖形,不合題意;B.此圖形不是軸對稱圖形,不合題意;C.此圖形是軸對稱圖形,符合題意;D.此圖形不是軸對稱圖形,不合題意.故選C.7、B【解析】

將一次函數解析式代入到反比例函數解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數圖象有兩個交點,且兩交點橫坐標的積為負數,根據根的判別式以及根與系數的關系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數圖象有兩個交點,且兩交點橫坐標的積為負數,∴(-解不等式組,得t>16故選:B.點睛:此題主要考查了反比例函數與一次函數的交點問題,關鍵是利用兩個函數的解析式構成方程,再利用一元二次方程的根與系數的關系求解.8、A【解析】試題分析:如圖:∵∠3=∠2=38°°(兩直線平行同位角相等),∴∠1=90°﹣∠3=52°,故選A.考點:平行線的性質.9、B【解析】

直接利用,接近的整數是1,進而得出答案.【詳解】∵a為整數,且<a<,∴a=1.故選:.【點睛】考查了估算無理數大小,正確得出無理數接近的有理數是解題關鍵.10、A【解析】【分析】根據三視圖的知識使用排除法即可求得答案.【詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長方形,可排除C,故選A.【點睛】本題考查了由三視圖判斷幾何體的知識,做此類題時可利用排除法解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≠1【解析】由題意得x-1≠0,∴x≠1.故答案為x≠1.12、x≥1【解析】分析:分別求出兩個不等式的解,從而得出不等式組的解集.詳解:解不等式①可得:x≥1,解不等式②可得:x>-3,∴不等式組的解為x≥1.點睛:本題主要考查的是不等式組的解集,屬于基礎題型.理解不等式的性質是解決這個問題的關鍵.13、6.7×106【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:6700000用科學記數法表示應記為6.7×106,故選6.7×106.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為ax10n的形式,其中1≤|a|<10,n為整數;表示時關鍵要正確確定a的值以及n的值.14、2.40,2.1.【解析】∵把7天的成績從小到大排列為:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它們的中位數為2.40,眾數為2.1.故答案為2.40,2.1.點睛:本題考查了中位數和眾數的求法,如果一組數據有奇數個,那么把這組數據從小到大排列后,排在中間位置的數是這組數據的中位數;如果一組數據有偶數個,那么把這組數據從小到大排列后,排在中間位置的兩個數的平均數是這組數據的中位數.一組數據中出現次數最多的數是這組數據的眾數.15、【解析】試題解析:所以故答案為16、a≥﹣1且a≠1【解析】

利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個不等式的公共部分即可.【詳解】根據題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.故答案為a≥﹣1且a≠1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:當△>1時,方程有兩個不相等的兩個實數根;當△=1時,方程有兩個相等的兩個實數根;當△<1時,方程無實數根.三、解答題(共8題,共72分)17、(1)120,30%;(2)作圖見解析;(3)1.【解析】試題分析:(1)用安全意識分“一般”的人數除以安全意識分“一般”的人數所占的百分比即可得這次調查一共抽取的學生人數;用安全意識分“很強”的人數除以這次調查一共抽取的學生人數即可得安全意識“很強”的學生占被調查學生總數的百分比;(2)用這次調查一共抽取的學生人數乘以安全意識分“較強”的人數所占的百分比即可得安全意識分“較強”的人數,在條形統(tǒng)計圖上畫出即可;(3)用總人數乘以安全意識為“淡薄”、“一般”的學生一共所占的百分比即可得全校需要強化安全教育的學生的人數.試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補全統(tǒng)計圖如下:(3)1800×=1人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;用樣本估計總體.18、(1)60°;(2)見解析【解析】

(1)連接BD,由AD為圓的直徑,得到∠ABD為直角,再利用30度角所對的直角邊等于斜邊的一半求出BD的長,根據CD與AB平行,得到一對內錯角相等,確定出∠CDB為直角,在直角三角形BCD中,利用銳角三角函數定義求出tanC的值,即可確定出∠C的度數;(2)連接OB,由OA=OB,利用等邊對等角得到一對角相等,再由CD與AB平行,得到一對同旁內角互補,求出∠ABC度數,由∠ABC﹣∠ABO度數確定出∠OBC度數為90,即可得證;【詳解】(1)如圖,連接BD,∵AD為圓O的直徑,∴∠ABD=90°,∴BD=AD=3,∵CD∥AB,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt△CDB中,tanC=,∴∠C=60°;(2)連接OB,∵∠A=30°,OA=OB,∴∠OBA=∠A=30°,∵CD∥AB,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,∴OB⊥BC,∴BC為圓O的切線.【點睛】此題考查了切線的判定,熟練掌握性質及定理是解本題的關鍵.19、(1)作圖見解析;(2)EB是平分∠AEC,理由見解析;(3)△PFB能由都經過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉120°和△EPA重合,①沿PF折疊,②沿AE折疊.【解析】【分析】(1)根據作線段的垂直平分線的方法作圖即可得出結論;(2)先求出DE=CE=1,進而判斷出△ADE≌△BCE,得出∠AED=∠BEC,再用銳角三角函數求出∠AED,即可得出結論;(3)先判斷出△AEP≌△FBP,即可得出結論.【詳解】(1)依題意作出圖形如圖①所示;(2)EB是平分∠AEC,理由:∵四邊形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵點E是CD的中點,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC==,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都經過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉120°和△EPA重合,①沿PF折疊,②沿AE折疊.【點睛】本題考查了矩形的性質,全等三角形的判定和性質,解直角三角形,圖形的變換等,熟練掌握和靈活應用相關的性質與定理、判斷出△AEP≌△△FBP是解本題的關鍵.20、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】

(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數表達式為;(3)存在,理由為:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).21、(1)證明見解析;(2)S平行四邊形ABCD=3.【解析】試題分析:(1)根據平行四邊形的性質得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據平行線的判定得出AD∥BC,根據平行四邊形的判定推出即可;(2)證明△ABE是等邊三角形,得出AE=AB=2,由直角三角形的性質求出CE和DE,得出AC的長,即可求出四邊形ABCD的面積.試題解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形;(2)∵sin∠ACD=,∴∠ACD=60°,∵四邊形ABCD是平行四邊形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等邊三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=CD=1,∴DE=CE=,AC=AE+CE=3,∴S平行四邊形ABCD=2S△ACD=AC?DE=3.22、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】

(1)如圖2,作A'F⊥BD,垂足為F.根據同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據全等三角形的性質即可得A'F=BC,根據BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論