七年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)1-4單元湘教版_第1頁(yè)
七年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)1-4單元湘教版_第2頁(yè)
七年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)1-4單元湘教版_第3頁(yè)
七年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)1-4單元湘教版_第4頁(yè)
七年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)1-4單元湘教版_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、七年級(jí)數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)歸納【湘教版】第一章 二元一次方程組一、二元一次方程組1、概念:二元一次方程:含有兩個(gè)未知數(shù),且未知數(shù)的指數(shù)(即次數(shù))都是1的方程,叫二元一次方程。二元一次方程組:兩個(gè)二元一次方程(或一個(gè)是一元一次方程,另一個(gè)是二元一次方程;或兩個(gè)都是一元一次方程;但未知數(shù)個(gè)數(shù)仍為兩個(gè))合在一起,就組成了二元一次方程組。2、二元一次方程的解和二元一次方程組的解: 使二元一次方程左右兩邊的值相等(即等式成立)的兩個(gè)未知數(shù)的值,叫二元一次方程的解。 使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的兩個(gè)未知數(shù)的值,叫二元一次方程組的解。注:、因?yàn)槎淮畏匠毯袃蓚€(gè)未知數(shù),所以,二元一次方程的解是

2、一組(對(duì))數(shù),用大括號(hào)聯(lián)立;、一個(gè)二元一次方程的解往往不是唯一的,而是有許多組;、而二元一次方程組的解是其中兩個(gè)二元一次方程的公共解,一般地,只有唯一的一組,但也可能有無數(shù)組或無解(即無公共解)。二元一次方程組的解的討論:a1a1x + b1y = c1a2x + b2y = c2 當(dāng)a1/a2 b1/b2 時(shí),有唯一解;當(dāng)a1/a2 = b1/b2 c1/c2時(shí),無解;當(dāng)a1/a2 = b1/b2 = c1/c2時(shí),有無數(shù)解。x + y = 42x + 2y = 8 x + y = 32x + 2y = 5 x + y = 43x - 5y = 9 例如:對(duì)應(yīng)方程組: x + y = 42x

3、 + 2y = 8 x + y = 32x + 2y = 5 x + y = 43x - 5y = 9 例:判斷下列方程組是否為二元一次方程組:x = 112x + 3y = 0 3t + 2s = 5ts + 6 = 0 x = 4y = 5 a + b = 2b + c = 3 x = 112x + 3y = 0 3t + 2s = 5ts + 6 = 0 x = 4y = 5 a + b = 2b + c = 3 3、用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù): 用含X的代數(shù)式表示Y,就是先把X看成已知數(shù),把Y看成未知數(shù);用含Y的代數(shù)式表示X,則相當(dāng)于把Y看成已知數(shù),把X看成未知數(shù)。例:在方

4、程 2x + 3y = 18 中,用含x的代數(shù)式表示y為:_,用含y的代數(shù)式表示x為:_。4、根據(jù)二元一次方程的定義求字母系數(shù)的值:要抓住兩個(gè)方面:、未知數(shù)的指數(shù)為1,、未知數(shù)前的系數(shù)不能為0例:已知方程 (a-2)x(/a/-1) (b+5)y(b2-24) = 3 是關(guān)于x、y的二元一次方程,求a、b的值。5、求二元一次方程的整數(shù)解例:求二元一次方程 3x + 4y = 18 的正整數(shù)解。思路:利用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的方法,可以求出方程有正整數(shù)解時(shí)x、y的取值范圍,然后再進(jìn)一步確定解。解:用含x的代數(shù)式表示y: y = 9/2 (3/4)x 用含y的代數(shù)式表示x: x =

5、 6 (4/3)y 因?yàn)槭乔笳麛?shù)解,則:9/2 (3/4)x 0 , 6 (4/3)y 0所以,0 x 6 ,0 y 設(shè)元(設(shè)未知數(shù)) 根據(jù)數(shù)量關(guān)系式列出方程組 解方程組 檢驗(yàn)并作答(注意:此步驟不要忘記)2、列方程組解應(yīng)用題的常見題型: (1)、和差倍分問題:解這類問題的基本等量關(guān)系式是:較大量 - 較小量 = 相差量 ,總量 = 倍數(shù) 倍量; (2)、產(chǎn)品配套問題:解這類題的基本等量關(guān)系式是:加工總量成比例; (3)、速度問題:解這類問題的基本關(guān)系式是:路程 = 速度 時(shí)間,包括相遇問題、追及問題等; (4)、航速問題:、順流(風(fēng)):航速 = 靜水(無風(fēng))時(shí)的速度 + 水(風(fēng))速; 、逆

6、流(風(fēng)):航速 = 靜水(無風(fēng))時(shí)的速度 水(風(fēng))速; (5)、工程問題:解這類問題的基本關(guān)系式是:工作總量 = 工作效率工作時(shí)間,(有時(shí)需把工作總量看作1); (6)、增長(zhǎng)率問題:解這類問題的基本關(guān)系式是:原量(1+增長(zhǎng)率)= 增長(zhǎng)后的量,原量(1-減少率)= 減少后的量; (7)、盈虧問題:解這類問題的關(guān)鍵是從盈(過剩)、虧(不足)兩個(gè)角度來把握事物的總量; (8)、數(shù)字問題:解這類問題,首先要正確掌握自然數(shù)、奇數(shù)、偶數(shù)等有關(guān)概念、特征及其表示; (9)、幾何問題:解這類問題的基本關(guān)系是有關(guān)幾何圖形的性質(zhì)、周長(zhǎng)、面積等計(jì)算公式; (10)、年齡問題:解這類問題的關(guān)鍵是抓住兩人年齡的增長(zhǎng)數(shù)相

7、等。例1:一批水果運(yùn)往某地,第一批360噸,需用6節(jié)火車車廂加上15輛汽車,第二批440噸,需用8節(jié)火車車廂加上10輛汽車,求每節(jié)火車車廂與每輛汽車平均各裝多少噸?例2:甲、乙兩物體分別在周長(zhǎng)為400米的環(huán)形軌道上運(yùn)動(dòng),已知它們同時(shí)從一處背向出發(fā),25秒后相遇,若甲物體先從該處出發(fā),半分鐘后乙物體再?gòu)脑撎幫虺霭l(fā)追趕甲物體,則再過3分鐘后才趕上甲,假設(shè)甲、乙兩物體的速度均不變,求甲、乙兩物體的速度。 例3:甲、乙二人分別以均勻速度在周長(zhǎng)為600米的圓形軌道上運(yùn)動(dòng),甲的速度比乙大,當(dāng)二人反向運(yùn)動(dòng)時(shí),每150秒相遇一次,當(dāng)二人同向運(yùn)動(dòng)時(shí),每10分鐘相遇一次,求二人的速度。例4:有兩種酒精溶液,甲種

8、酒精溶液的酒精與水的比是3 :7,乙種酒精溶液的酒精與水的比是4 :1,今要得到酒精與水的比是3 :2的酒精溶液50kg,求甲、乙兩種溶液各取多少kg?例5:一張方桌由一個(gè)桌面和四條桌腿組成,如果1立方米木料可制成方桌桌面50個(gè),或制作桌腿300條,現(xiàn)有5立方米木料,請(qǐng)問,要用多少木料做桌面,多少木料做桌腿,能使桌面恰好配套?此時(shí),可以制成多少?gòu)埛阶???:某人要在規(guī)定的時(shí)間內(nèi)由甲地趕往乙地,如果他以每小時(shí)50千米的速度行駛,就會(huì)遲到24分鐘,如果他以每小時(shí)75千米的速度行駛,則可提前24分鐘到達(dá)乙地,求甲、乙兩地間的距離。農(nóng)作物品種每公頃需勞動(dòng)力每公頃需投入資金水稻4人1萬元棉花8人1萬元蔬

9、菜5人2萬元例7:某農(nóng)場(chǎng)有300名職工耕種51公頃土地,計(jì)劃種植水稻、棉花、蔬菜三種農(nóng)作物,已知種植各種農(nóng)作物每公頃所需勞動(dòng)力人數(shù)及投入資金如右表:已知該農(nóng)場(chǎng)計(jì)劃投入資金67萬元,應(yīng)該怎樣安排這三種農(nóng)作物的種植面積才能使所有職工都有工作而且投入資金正好夠用?例8:某酒店的客房有三人間和兩人間兩種,三人間每人每天25元,兩人間每人每天35元,一個(gè)50人的旅游團(tuán)到該酒店租了若干間客房,且每間客房恰好住滿,一天共花去1510元,求兩種客房各租了多少間?年級(jí)捐款數(shù)額(元)捐助貧困中學(xué)生人數(shù)(名)捐助貧困小學(xué)生人數(shù)(名)初一年級(jí)400024初二年級(jí)420033初三年級(jí)7400例9:某山區(qū)有23名中、小學(xué)

10、生因貧困失學(xué)需要捐助,資助一名中學(xué)生的學(xué)習(xí)費(fèi)用需要a元,資助一名小學(xué)生的學(xué)習(xí)費(fèi)用需要b元。某校學(xué)生積極捐款,初中各年級(jí)學(xué)生捐款數(shù)額與使用這些捐款恰好資助受捐助中學(xué)生和小學(xué)生人數(shù)的部分情況如右表:(1)、求a、b的值;(2)初三年級(jí)的捐款解決了其余貧困中小學(xué)生的學(xué)習(xí)費(fèi)用,請(qǐng)分別計(jì)算出初三年級(jí)的捐款所資助的中學(xué)生和小學(xué)生人數(shù)。四、三元一次方程組的解法1、概念:由三個(gè)方程組成方程組,且方程組中共含有三個(gè)未知數(shù),每個(gè)方程中含有的未知數(shù)的次數(shù)都是1次,這樣的方程組叫三元一次方程組。注:三元一次方程組中的三個(gè)方程并不一定都是三元一次方程,只需滿足“方程組中共含有三個(gè)未知數(shù)”的條件即可。2、解三元一次方程組

11、的基本思想:一元一次方程消元(一元一次方程消元(代入法、加減法)二元一次方程組消元(代入法、加減法)三元一次方程組 例2:在y = ax+bx+c中,當(dāng)x=1時(shí),y=0;x=2時(shí),y=3;x=3時(shí),y=28,求a、b、c的值。當(dāng)x = -1時(shí),y的值是多少?例3:甲、乙、丙三數(shù)之和是26,甲數(shù)比乙數(shù)大1,甲數(shù)的兩倍與丙數(shù)的和比乙數(shù)大18,求這三個(gè)數(shù)。例4:小明從家到學(xué)校的路程為3.3千米,其中有一段上坡路,一段平路,一段下坡路,如果保持上坡路每小時(shí)行3千米,平路每小時(shí)行4千米,下坡路每小時(shí)行5千米,那么小明從家到學(xué)校需要1小時(shí),從學(xué)校回家只需要44分鐘。求小明家到學(xué)校的上坡路、平路、下坡路各是

12、多少千米?第二章 整式的乘法1同底數(shù)冪的乘法:aman=am+n ,底數(shù)不變,指數(shù)相加. 2冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積.3單項(xiàng)式的乘法:系數(shù)相乘,相同字母相乘,只在一個(gè)因式中含有的字母,連同指數(shù)寫在積里.4單項(xiàng)式與多項(xiàng)式的乘法:m(a+b+c)=ma+mb+mc ,用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加.5多項(xiàng)式的乘法:(a+b)(c+d)=ac+ad+bc+bd ,先用多項(xiàng)式的每一項(xiàng)去乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.6乘法公式:(1)平方差公式:(a+b)(a-b)= a2-b2,兩個(gè)數(shù)的

13、和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差;(2)完全平方公式: (a+b)2=a2+2ab+b2, 兩個(gè)數(shù)和的平方,等于它們的平方和,加上它們的積的2倍; (a-b)2=a2-2ab+b2 , 兩個(gè)數(shù)差的平方,等于它們的平方和,減去它們的積的2倍; (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7配方:(1)若二次三項(xiàng)式x2+px+q是完全平方式,則有關(guān)系式:;(2)二次三項(xiàng)式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式,利用a(x-h)2+k可以判斷ax2+bx+c值的符號(hào); 當(dāng)x=h時(shí),可求出ax2+bx+c的最大(或最?。┲祂.(3)注意:.8同底數(shù)冪的

14、除法:aman=am-n ,底數(shù)不變,指數(shù)相減.9零指數(shù)與負(fù)指數(shù)公式: (1)a0=1 (a0); a-n=,(a0). 注意:00,0-2無意義;(2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.0110-5 .第三章 因式分解因式分解 定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式,這種變形叫因式分解。 即:多項(xiàng)式幾個(gè)整式的積 例:因式分解是對(duì)多項(xiàng)式進(jìn)行的一種恒等變形,是整式乘法的逆過程。2.因式分解的方法: (1)提公因式法: = 1 * GB3 定義:如果多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,將多項(xiàng)式寫成因式乘積的形式,這個(gè)變形就是提公因式法分解因式

15、。公因式:多項(xiàng)式的各項(xiàng)都含有的相同的因式。公因式可以是一個(gè)數(shù)字或字母,也可以是一個(gè)單項(xiàng)式或多項(xiàng)式。 例:的公因式是 解析:從多項(xiàng)式的系數(shù)和字母兩部分來考慮,系數(shù)部分分別是12、-8、6,它們的最大公約數(shù)為2;字母部分都含有因式,故多項(xiàng)式的公因式是2. = 2 * GB3 提公因式的步驟第一步:找出公因式;第二步:提公因式并確定另一個(gè)因式,提公因式時(shí),可用原多項(xiàng)式除以公因式,所得商即是提公因式后剩下的另一個(gè)因式。注意:提取公因式后,對(duì)另一個(gè)因式要注意整理并化簡(jiǎn),務(wù)必使因式最簡(jiǎn)。多項(xiàng)式中第一項(xiàng)有負(fù)號(hào)的,要先提取符號(hào)。例1:把分解因式. 解析:本題的各項(xiàng)系數(shù)的最大公約數(shù)是6,相同字母的最低次冪是ab

16、,故公因式為6ab。 解:例2:把多項(xiàng)式分解因式解析:由于,多項(xiàng)式可以變形為,我們可以發(fā)現(xiàn)多項(xiàng)式各項(xiàng)都含有公因式(),所以我們可以提取公因式()后,再將多項(xiàng)式寫成積的形式.解:=例3:把多項(xiàng)式分解因式 解:= (2)運(yùn)用公式法 定義:把乘法公式反過來用,就可以用來把某些多項(xiàng)式分解因式,這種分解因式的方法叫做運(yùn)用公式法。 注意: = 1 * GB3 公式中的字母可代表一個(gè)數(shù)、一個(gè)單項(xiàng)式或一個(gè)多項(xiàng)式。 = 2 * GB3 選擇使用公式的方法:主要從項(xiàng)數(shù)上看,若多項(xiàng)式是二項(xiàng)式可考慮平方差公式;若多項(xiàng)式是三項(xiàng)式,可考慮完全平方公式。例1:因式分解 解:=例2:因式分解 解:= (3)分組分解法(拓展)

17、 = 1 * GB3 將多項(xiàng)式分組后能提公因式進(jìn)行因式分解;例:把多項(xiàng)式分解因式 解:= = 2 * GB3 將多項(xiàng)式分組后能運(yùn)用公式進(jìn)行因式分解. 例:將多項(xiàng)式因式分解解:= (4)十字相乘法(形如形式的多項(xiàng)式,可以考慮運(yùn)用此種方法) 方法:常數(shù)項(xiàng)拆成兩個(gè)因數(shù),這兩數(shù)的和為一次項(xiàng)系數(shù) 例:分解因式 分解因式補(bǔ)充點(diǎn)詳解 補(bǔ)充點(diǎn)詳解我們可以將-30分解成pq的形式, 我們可以將100分解成pq的形式,使p+q=-1, pq=-30,我們就有p=-6, 使p+q=52, pq=100,我們就有p=2,q=5或q=-6,p=5。 q=50或q=2,p=50。 所以將多項(xiàng)式可以分 所以將多項(xiàng)式可以分解

18、為 解為3.因式分解的一般步驟: 如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。例題解析提公因式法提取公因式:如果多項(xiàng)式的各項(xiàng)有公因式,一般要將公因式提到括號(hào)外面.確定公因式的方法:系數(shù)取多項(xiàng)式各項(xiàng)系數(shù)的最大公約數(shù);字母(或多項(xiàng)式因式)取各項(xiàng)

19、都含有的字母(或多項(xiàng)式因式)的最低次冪.分解因式:(為正整數(shù))(、為大于1的自然數(shù))分解因式: ,為正整數(shù).先化簡(jiǎn)再求值,其中,求代數(shù)式的值:,其中.已知:,求的值.分解因式:.公式法平方差公式:公式左邊形式上是一個(gè)二項(xiàng)式,且兩項(xiàng)的符號(hào)相反;每一項(xiàng)都可以化成某個(gè)數(shù)或式的平方形式;右邊是這兩個(gè)數(shù)或式的和與它們差的積,相當(dāng)于兩個(gè)一次二項(xiàng)式的積.完全平方公式: 左邊相當(dāng)于一個(gè)二次三項(xiàng)式;左邊首末兩項(xiàng)符號(hào)相同且均能寫成某個(gè)數(shù)或式的完全平方式;左邊中間一項(xiàng)是這兩個(gè)數(shù)或式的積的2倍,符號(hào)可正可負(fù);右邊是這兩個(gè)數(shù)或式的和(或差)的完全平方,其和或差由左邊中間一項(xiàng)的符號(hào)決定.一些需要了解的公式: 第四章相交線

20、與平行線一、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)二、知識(shí)要點(diǎn)1、在同一平面內(nèi),兩條直線的位置關(guān)系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。2、在同一平面內(nèi),不相交的兩條直線叫 平行線 。如果兩條直線只有 一個(gè) 公共點(diǎn),稱這兩條直線相交;如果兩條直線 沒有 公共點(diǎn),稱這兩條直線平行。3、兩條直線相交所構(gòu)成的四個(gè)角中,有 公共頂點(diǎn) 且有 一條公共邊 的兩個(gè)角是鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì): 鄰補(bǔ)角互補(bǔ) 。如圖1所示, 與 互為鄰補(bǔ)角, 與 互為鄰補(bǔ)角。 + = 180; + = 180; + = 180; + = 180。4、兩條直線相交所構(gòu)成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的 反向延長(zhǎng)線 ,這樣

21、的兩個(gè)角互為 對(duì)頂角 。對(duì)頂角的性質(zhì):對(duì)頂角相等。如圖1所示, 與 互為對(duì)頂角。 = ; = 。5、兩條直線相交所成的角中,如果有一個(gè)是 直角或90時(shí),稱這兩條直線互相垂直,其中一條叫做另一條的垂線。如圖2所示,當(dāng) = 90時(shí), 。垂線的性質(zhì):性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。性質(zhì)3:如圖2所示,當(dāng) a b 時(shí), = = = = 90。b c 點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度叫點(diǎn)到直線的距離。b c 6、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角基本特征:在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側(cè) ,這樣的兩個(gè)角叫 同位角 。圖3中,共有 對(duì)同位角: 與 是同位角; 與 是同位角; 與 是同位角; 與 是同位角。在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側(cè) ,這樣的兩個(gè)角叫 內(nèi)錯(cuò)角 。圖3中,共有 對(duì)內(nèi)錯(cuò)角: 與 是內(nèi)錯(cuò)角; 與 是內(nèi)錯(cuò)角。在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個(gè)角叫 同旁內(nèi)角 。圖3中,共有 對(duì)同旁內(nèi)角: 與 是同旁內(nèi)角; 與 是同旁內(nèi)角。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論