




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限2某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,
2、得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的C互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多D互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多3函數(shù)的圖象可能為( )ABCD4已知向量,若,則( )ABCD5將函數(shù)向左平移個單位,得到的圖象,則滿足( )A圖象關(guān)于點對稱,在區(qū)間上為增函數(shù)B函數(shù)最大值為2,圖象關(guān)于點對稱C圖象關(guān)于直線對稱,在上的最小值為1D
3、最小正周期為,在有兩個根6已知某幾何體的三視圖如右圖所示,則該幾何體的體積為( )A3BCD7已知是過拋物線焦點的弦,是原點,則( )A2B4C3D38在中所對的邊分別是,若,則( )A37B13CD9若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限10記的最大值和最小值分別為和若平面向量、,滿足,則( )ABCD11設(shè)復(fù)數(shù),則=( )A1BCD12偶函數(shù)關(guān)于點對稱,當(dāng)時,求( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當(dāng)二
4、面角平面角的大小為時,k的值為_.14已知函數(shù)為奇函數(shù),則_.15若實數(shù)滿足不等式組,則的最小值是_16 “今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個月(按30天計算)共織布390尺”則每天增加的數(shù)量為_尺,設(shè)該女子一個月中第n天所織布的尺數(shù)為,則_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)己知函數(shù).(1)當(dāng)時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.18(12分)已知不等式的解集為.(1)求實數(shù)的值;(2)已知存在實數(shù)使得恒成立,求實數(shù)的
5、最大值.19(12分)已知函數(shù).(1)當(dāng)時,判斷在上的單調(diào)性并加以證明;(2)若,求的取值范圍.20(12分)已知函數(shù)為實數(shù))的圖像在點處的切線方程為.(1)求實數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù),證明時, .21(12分)如圖,在三棱錐中,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.22(10分)已知正項數(shù)列的前項和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項數(shù)列的前項和為,若,且.求數(shù)列的通項公式;求證:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】試題分析:由題意可得
6、:. 共軛復(fù)數(shù)為,故選A.考點:1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點與復(fù)數(shù)的關(guān)系2D【解析】根據(jù)兩個圖形的數(shù)據(jù)進(jìn)行觀察比較,即可判斷各選項的真假【詳解】在A中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的,所以是正確的;在C中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運(yùn)營崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為
7、,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多故選:D.【點睛】本題主要考查了命題的真假判定,以及統(tǒng)計圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3C【解析】先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.4A【解析】利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.5C【解析】由輔助角公式化簡三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得
8、的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項.【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質(zhì)可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關(guān)于直線對稱;當(dāng)時,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當(dāng),由正弦函數(shù)的圖象與性質(zhì)可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.6B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:直三棱柱的體積為,消去的三棱錐的體積為,幾何體
9、的體積,故選B. 點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.7D【解析】設(shè),設(shè):,聯(lián)立方程得到,計算得到答案.【詳解】設(shè),故.易知直線斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數(shù)量積,設(shè)直線為可以簡化運(yùn)算,是解題的關(guān)鍵 .8D【解析】直接根據(jù)余弦定理求解即可【詳解】解:,故選:D【點睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題9A【解析】將 整理成的形式,得到復(fù)數(shù)所對應(yīng)的的點,從而可選
10、出所在象限.【詳解】解:,所以所對應(yīng)的點為在第一象限.故選:A.【點睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,考查了復(fù)數(shù)對應(yīng)的坐標(biāo).易錯點是誤把 當(dāng)成進(jìn)行計算.10A【解析】設(shè)為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算得出點的軌跡方程,將和轉(zhuǎn)化為圓上的點到定點距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,建立平面直角坐標(biāo)系,設(shè),由,可得,即,化簡得點的軌跡方程為,則,則轉(zhuǎn)化為圓上的點與點的距離,轉(zhuǎn)化為圓上的點與點的距離,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問題轉(zhuǎn)化為圓上的點到定點距離的最值問題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)
11、化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.11A【解析】根據(jù)復(fù)數(shù)的除法運(yùn)算,代入化簡即可求解.【詳解】復(fù)數(shù),則故選:A.【點睛】本題考查了復(fù)數(shù)的除法運(yùn)算與化簡求值,屬于基礎(chǔ)題.12D【解析】推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點對稱,則,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時,則.故選:D.【點睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底
12、面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.點Q到底面的距離與到點P的距離之比為正常數(shù)k,則,動點Q的軌跡是拋物線,即則.二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.14【解析】利用奇函數(shù)的定義得出,結(jié)合對數(shù)的運(yùn)算性質(zhì)可求得實數(shù)的值.【詳解】由于函數(shù)為奇函數(shù),則,即,整理得,解得.當(dāng)時,真數(shù),不合乎題意;當(dāng)時,解不等式,解得或,此時函數(shù)的定義域為,定義域關(guān)于原點對稱,合乎題意.綜上所述,.故答案為
13、:.【點睛】本題考查利用函數(shù)的奇偶性求參數(shù),考查了函數(shù)奇偶性的定義和對數(shù)運(yùn)算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.15-1【解析】作出可行域,如圖:由得,由圖可知當(dāng)直線經(jīng)過A點時目標(biāo)函數(shù)取得最小值,A(1,0)所以-1故答案為-116 52 【解析】設(shè)從第2天開始,每天比前一天多織尺布,由等差數(shù)列前項和公式求出,由此利用等差數(shù)列通項公式能求出.【詳解】設(shè)從第2天開始,每天比前一天多織d尺布,則,解得,即每天增加的數(shù)量為,故答案為,52.【點睛】本題主要考查等差數(shù)列的通項公式、等差數(shù)列的求和公式,意在考查利用所學(xué)知識解決問題的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或
14、演算步驟。17(1)證明見解析(2)證明見解析【解析】(1)求導(dǎo)得,由,且,得到,再利用函數(shù)在上單調(diào)遞減論證.(2)根據(jù)題意,求導(dǎo),令,易知; ,易知當(dāng)時,;當(dāng)時,函數(shù)單調(diào)遞增,而,又,由零點存在定理得,使得,使得,有從而得證.【詳解】(1)依題意,因為,且,故,故函數(shù)在上單調(diào)遞減,故.(2)依題意,令,則;而,可知當(dāng)時,故函數(shù)在上單調(diào)遞增,故當(dāng)時,;當(dāng)時,函數(shù)單調(diào)遞增,而,又,故,使得,故,使得,即函數(shù)單調(diào)遞增,即單調(diào)遞增;故當(dāng)時,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故當(dāng)時,函數(shù)有極小值.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),還考查推理論證能力以及函數(shù)與方程思想,屬于難題.18(1);(2)
15、4【解析】(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉(zhuǎn)化原不等式為:,利用均值不等式即得解.【詳解】(1)當(dāng)時不等式可化為 當(dāng)時,不等式可化為;當(dāng)時,不等式可化為;綜上不等式的解集為.(2)由(1)有,即而當(dāng)且僅當(dāng):,即,即時等號成立,綜上實數(shù)最大值為4.【點睛】本題考查了絕對值不等式的求解與不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19(1)在為增函數(shù);證明見解析(2)【解析】(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類討論思想和導(dǎo)數(shù)性質(zhì)求出實數(shù)的取值范圍.【詳解】(1)當(dāng)時,.記,則,當(dāng)時,.所以,所
16、以在單調(diào)遞增,所以.因為,所以,所以在為增函數(shù).(2)由題意,得,記,則,令,則,當(dāng)時,所以,所以在為增函數(shù),即在單調(diào)遞增,所以.當(dāng),恒成立,所以為增函數(shù),即在單調(diào)遞增,又,所以,所以在為增函數(shù),所以所以滿足題意.當(dāng),令,因為,所以,故在單調(diào)遞增,故,即.故,又在單調(diào)遞增,由零點存在性定理知,存在唯一實數(shù),當(dāng)時,單調(diào)遞減,即單調(diào)遞減,所以,此時在為減函數(shù),所以,不合題意,應(yīng)舍去.綜上所述,的取值范圍是.【點睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值和零點及不等式恒成立等問題,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想,考查了學(xué)生的邏輯推理和運(yùn)算求解能力,屬于難題.
17、20 (1) ;函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見解析.【解析】試題分析:(1)由題得,根據(jù)曲線在點處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;(2)由(1)得 根據(jù)由,整理得,設(shè),轉(zhuǎn)化為函數(shù)的最值,即可作出證明.試題解析:(1)由題得,函數(shù)的定義域為, ,因為曲線在點處的切線方程為,所以解得.令,得,當(dāng)時, , 在區(qū)間內(nèi)單調(diào)遞減;當(dāng)時, , 在區(qū)間內(nèi)單調(diào)遞增.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)得, .由,得,即.要證,需證,即證,設(shè),則要證,等價于證: .令,則,在區(qū)間內(nèi)單調(diào)遞增, ,即,故.21(1)見解析;(2).【解析】
18、(1)設(shè)中點為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.【詳解】(1)設(shè)中點為,連接、, 因為,所以.又,所以,又由已知,則,所以,.又為正三角形,且,所以,因為,所以,平面,又平面,平面平面;(2)由于是底面直角三角形的斜邊的中點,所以點是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點即為球心,記的中點為點,則.由與相似可得,所以.所以三棱錐外接球的體積為.【點睛】本題考查面面垂直的證明,同時也考查了三棱錐外接球體積的計算,找出外接球球心的位置是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.22(1);(2);詳見解析.【解析】(1)依題意可表示,相減得,由等比數(shù)列通項公式轉(zhuǎn)化為首項與公比,解得答案,并由其都是正項數(shù)列舍根; (2)由題意可表示,兩式相減得,由其都是正項并整理可得遞推關(guān)系,由等差數(shù)列的通項公式即可得答案
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自由組合定律-2023年高考生物一輪復(fù)習(xí)考點
- 新高考化學(xué)實驗新考法專項復(fù)習(xí):備用儀器選擇(解析版)
- 小說文本閱讀-2024年中考語文復(fù)習(xí)專練
- 2025年光伏發(fā)電系統(tǒng)設(shè)計與優(yōu)化考核練習(xí)題(一)【各地真題】附答案
- 浙江省溫州市龍灣區(qū)2023-2024學(xué)年五年級上冊期末考試科學(xué)試卷
- 浙江省紹興市諸暨市2023-2024學(xué)年八年級上學(xué)期期末考試數(shù)學(xué)試卷(含解析)
- 浙江省衢州市衢江區(qū)2023-2024學(xué)年六年級上學(xué)期期末科學(xué)試卷
- 閱讀還原句子型解題技巧講解(原卷版)-2024年中考英語閱讀理解提分技巧
- 互動式教學(xué)在健康促進(jìn)培訓(xùn)中的實施考核試卷
- 廢棄物處理過程中的環(huán)境風(fēng)險評估與應(yīng)急響應(yīng)技術(shù)考核試卷
- 護(hù)士崗位分層管理
- 科技助力家庭花園自動化管理
- 藥品政策效果評價-洞察分析
- 《人體發(fā)育學(xué)》教案
- 安裝工程預(yù)算與清單計價-第3版教學(xué)課件第4章-建筑強(qiáng)電工程量計算
- 2025年華僑港澳臺學(xué)生聯(lián)招考試英語試卷試題(含答案詳解)
- 林下經(jīng)濟(jì)中藥材種植基地建設(shè)項目可行性研究報告立項新版
- 2025年1月浙江高考首考英語應(yīng)用文范文講評課件
- DB33T 2455-2022 森林康養(yǎng)建設(shè)規(guī)范
- 2024-2030年中國軌道交通輔助電源系統(tǒng)市場競爭格局及未來發(fā)展策略分析報告
- 2024-2030年中國白糖行業(yè)市場運(yùn)行狀況及發(fā)展規(guī)模預(yù)測報告
評論
0/150
提交評論