




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
天津市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題(附答案)(1)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別是點(diǎn)D、E,AD=3,BE=1,則BC的長(zhǎng)是()A. B.2 C. D.2.如圖,正方形ABCD的邊長(zhǎng)為8,M在DC上,且DM=2,N是AC上的一動(dòng)點(diǎn),則DN+MN的最小值是()A.8 B.9 C.10 D.123.如圖,在四邊形ABCD中,∠DAB=30°,點(diǎn)E為AB的中點(diǎn),DE⊥AB,交AB于點(diǎn)E,DE=,BC=1,CD=,則CE的長(zhǎng)是()A. B. C. D.4.如果正整數(shù)a、b、c滿足等式,那么正整數(shù)a、b、c叫做勾股數(shù).某同學(xué)將自己探究勾股數(shù)的過(guò)程列成下表,觀察表中每列數(shù)的規(guī)律,可知的值為()A.47 B.62 C.79 D.985.如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=,CB的反向延長(zhǎng)線上有一動(dòng)點(diǎn)D,以AD為邊在右側(cè)作等邊三角形,連CE,CE最短長(zhǎng)為()A. B. C. D.6.如圖,已知,點(diǎn)在邊上,,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),若周長(zhǎng)的最小值是6,則的長(zhǎng)是()A. B. C. D.17.如圖,在中,,,,與的平分線交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),若則的長(zhǎng)為()A. B.2 C. D.48.如圖,在中,,的平分線與邊相交于點(diǎn),,垂足為,若的周長(zhǎng)為6,則的面積為().A.36 B.18 C.12 D.99.如圖,在等腰三角形ABC中,AC=BC=5,AB=8,D為底邊上一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),DE⊥AC,DF⊥BC,垂足分別為E、F,則DE+DF=()A.5 B.8 C.13 D.4.810.如圖,小巷左右兩側(cè)是豎直的墻壁,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為米,頂端距離地面米.若梯子底端位置保持不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面米,則小巷的寬度為()A. B. C. D.11.△ABC的三邊分別為,下列條件能推出△ABC是直角三角形的有()①;②;③∠A=∠B∠C;④∠A∶∠B∶∠C=1∶2∶3;⑤;⑥A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)12.如圖,在平行四邊形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF與AD的延長(zhǎng)線相交于點(diǎn)G,下面給出四個(gè)結(jié)論:①;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正確的結(jié)論是()A.①②③ B.①②④ C.②③④ D.①②③④13.下列四組數(shù)據(jù)不能作為直角三角形的三邊長(zhǎng)的是()A.6,8,10 B.5,12,13 C.3,5,6 D.,,14.一個(gè)直角三角形兩邊長(zhǎng)分別是和,則第三邊的長(zhǎng)是()A. B.或 C.或 D.15.如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準(zhǔn)備去書店,按圖中的街道行走,最近的路程約為()A. B. C. D.16.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對(duì)折后,點(diǎn)A恰好落在BC上的點(diǎn)D處,若CE=1,AB=4,則下列結(jié)論一定正確的個(gè)數(shù)是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE與△BDF的周長(zhǎng)相等;A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)17.若△ABC中,AB=AC=,BC=4,則△ABC的面積為()A.4 B.8 C.16 D.18.如圖,△ABC中,AB=10,BC=12,AC=,則△ABC的面積是().A.36 B. C.60 D.19.如圖,在數(shù)軸上點(diǎn)所表示的數(shù)為,則的值為()A. B. C. D.20.如圖,在四邊形ABCD中,,與的平分線相交于BC邊上的M點(diǎn),則下列結(jié)論:①;②;③;④到AD的距離等于BC的;⑤為BC的中點(diǎn);其中正確的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)21.下列長(zhǎng)度的三條線段能組成直角三角形的是()A.9,7,12 B.2,3,4 C.1,2, D.5,11,1222.如圖,△ABC中,AB=AC,AD是∠BAC的平分線.已知AB=5,AD=3,則BC的長(zhǎng)為()A.5 B.6 C.8 D.1023.已知直角三角形的兩條邊長(zhǎng)分別是3和5,那么這個(gè)三角形的第三條邊的長(zhǎng)()A.4 B.16 C. D.4或24.《九章算術(shù)》是我國(guó)古代第一部數(shù)學(xué)專著,它的出現(xiàn)標(biāo)志中國(guó)古代數(shù)學(xué)形成了完整的體系.“折竹抵地”問(wèn)題源自《九章算術(shù)》中:“今有竹高一丈,末折抵地,去本四尺,問(wèn)折者高幾何?”意思是:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn)(如圖),則折斷后的竹子高度為多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.425.如圖,正方體的棱長(zhǎng)為4cm,A是正方體的一個(gè)頂點(diǎn),B是側(cè)面正方形對(duì)角線的交點(diǎn).一只螞蟻在正方體的表面上爬行,從點(diǎn)A爬到點(diǎn)B的最短路徑是()A.9 B. C. D.1226.已知等邊三角形的邊長(zhǎng)為a,則它邊上的高、面積分別是()A. B. C. D.27.如圖是由“趙爽弦圖”變化得到的,它由八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2、S3.若S1+S2+S3=15,則S2的值是(
)A.3 B. C.5 D.28.在直角三角形中,,兩直角邊長(zhǎng)及斜邊上的高分別為,則下列關(guān)系式成立的是()A. B. C. D.29.勾股定理是“人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一”.我國(guó)對(duì)勾股定理的證明是由漢代的趙爽在注解《周髀算經(jīng)》時(shí)給出的,他用來(lái)證明勾股定理的圖案被稱為“趙爽弦圖”.2002年在北京召開的國(guó)際數(shù)學(xué)大會(huì)選它作為會(huì)徽.下列圖案中是“趙爽弦圖”的是()A. B. C. D.30.A、B、C分別表示三個(gè)村莊,米,米,米,某社區(qū)擬建一個(gè)文化活動(dòng)中心,要求這三個(gè)村莊到活動(dòng)中心的距離相等,則活動(dòng)中心P的位置應(yīng)在()A.AB的中點(diǎn) B.BC的中點(diǎn)C.AC的中點(diǎn) D.的平分線與AB的交點(diǎn)【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.D解析:D【分析】根據(jù)條件可以得出∠E=∠ADC=90°,進(jìn)而得出△CEB≌△ADC,就可以得出AD=CE,再利用勾股定理就可以求出BC的值.【詳解】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴CE=AD=3,在Rt△BEC中,,故選D.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.2.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考慮通過(guò)作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.【詳解】解:∵正方形是軸對(duì)稱圖形,點(diǎn)B與點(diǎn)D是關(guān)于直線AC為對(duì)稱軸的對(duì)稱點(diǎn),∴連接BN,BD,則直線AC即為BD的垂直平分線,∴BN=ND∴DN+MN=BN+MN連接BM交AC于點(diǎn)P,∵點(diǎn)N為AC上的動(dòng)點(diǎn),由三角形兩邊和大于第三邊,知當(dāng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)P時(shí),BN+MN=BP+PM=BM,BN+MN的最小值為BM的長(zhǎng)度,∵四邊形ABCD為正方形,∴BC=CD=8,CM=8?2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故選:C.【點(diǎn)睛】此題考查正方形的性質(zhì)和軸對(duì)稱及勾股定理等知識(shí)的綜合應(yīng)用,解題的難點(diǎn)在于確定滿足條件的點(diǎn)N的位置:利用軸對(duì)稱的方法.然后熟練運(yùn)用勾股定理.3.D解析:D【解析】【分析】連接BD,作CF⊥AB于F,由線段垂直平分線的性質(zhì)得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性質(zhì)得出BD=AD=2DE=,AE=BE=DE=3,證出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出結(jié)果.【詳解】解:連接BD,作CF⊥AB于F,如圖所示:則∠BFC=90°,∵點(diǎn)E為AB的中點(diǎn),DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=BC=,CF=BF=,∴EF=BE+BF=,在Rt△CEF中,由勾股定理得:CE=;故選D.【點(diǎn)睛】本題考查了勾股定理、勾股定理的逆定理、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì);熟練掌握勾股定理和逆定理是解題的關(guān)鍵.4.C解析:C【分析】依據(jù)每列數(shù)的規(guī)律,即可得到,進(jìn)而得出的值.【詳解】解:由題可得:……當(dāng)故選C【點(diǎn)睛】本題為勾股數(shù)與數(shù)列規(guī)律綜合題;觀察數(shù)列,找出規(guī)律是解答本題的關(guān)鍵.5.C解析:C【分析】在CB的反向延長(zhǎng)線上取一點(diǎn)B’,使得BC=B’C,連接AB’,易證△AB’D≌△ABE,可得∠ABE=∠B’=60°,因此點(diǎn)E的軌跡是一條直線,過(guò)點(diǎn)C作CH⊥BE,則點(diǎn)H即為使得BE最小時(shí)的E點(diǎn)的位置,然后根據(jù)直角三角形的性質(zhì)和勾股定理即可得出答案.【詳解】解:在CB的反向延長(zhǎng)線上取一點(diǎn)B’,使得BC=B’C,連接AB’,∵∠ACB=90°,∠ABC=60°,∴△AB’B是等邊三角形,∴∠B’=∠B’AB=60°,AB’=AB,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60°,∴點(diǎn)E在直線BE上運(yùn)動(dòng),過(guò)點(diǎn)C作CH⊥BE于點(diǎn)H,則點(diǎn)H即為使得BE最小時(shí)的E點(diǎn)的位置,∠CBH=180°-∠ABC-∠ABE=60°,∴∠BCH=30°,∴BH=BC=,∴CH==.即BE的最小值是.故選C.【點(diǎn)睛】本題是一道動(dòng)點(diǎn)問(wèn)題,綜合考查了全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),直角三角形的性質(zhì)和勾股定理等知識(shí),將△ACB構(gòu)造成等邊三角形,通過(guò)全等證出∠ABC是定值,即點(diǎn)E的運(yùn)動(dòng)軌跡是直線是解決此題的關(guān)鍵.6.D解析:D【分析】作點(diǎn)A關(guān)于OM的對(duì)稱點(diǎn)E,AE交OM于點(diǎn)D,連接BE、OE,BE交OM于點(diǎn)C,此時(shí)△ABC周長(zhǎng)最小,根據(jù)題意及作圖可得出△OAD是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,從而證明△BOE是直角三角形,然后設(shè)AB=x,則OB=3+x,根據(jù)周長(zhǎng)最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【詳解】解:作點(diǎn)A關(guān)于OM的對(duì)稱點(diǎn)E,AE交OM于點(diǎn)D,連接BE、OE,BE交OM于點(diǎn)C,此時(shí)△ABC周長(zhǎng)最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周長(zhǎng)的最小值是6,∴AB+BE=6,∵∠MON=45°,AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45°,由作圖可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE是直角三角形,設(shè)AB=x,則OB=3+x,BE=6-x,在Rt△OBE中,,解得:x=1,∴AB=1.故選D.【點(diǎn)睛】本題考查了利用軸對(duì)稱求最值,等腰直角三角形的判定與性質(zhì),勾股定理,熟練掌握作圖技巧,正確利用勾股定理建立出方程是解題的關(guān)鍵.7.B解析:B【分析】過(guò)點(diǎn)O作OE⊥BC于E,OF⊥AC于F,由角平分線的性質(zhì)得到OD=OE=OF,根據(jù)勾股定理求出BC的長(zhǎng),易得四邊形ADFO為正方形,根據(jù)線段間的轉(zhuǎn)化即可得出結(jié)果.【詳解】解:過(guò)點(diǎn)O作OE⊥BC于E,OF⊥AC于F,∵BO,CO分別為∠ABC,∠ACB的平分線,所以O(shè)D=OE=OF,又BO=BO,∴△BDO≌△BEO,∴BE=BD.同理可得,CE=CF.又四邊形ADOE為矩形,∴四邊形ADOE為正方形.∴AD=AF.∵在Rt△ABC中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故選:B.【點(diǎn)睛】此題考查了角平分線的定義與性質(zhì),以及全等三角形的判定與性質(zhì),屬于中考??碱}型.8.D解析:D【分析】利用角平分定理得到DE=AD,根據(jù)三角形內(nèi)角和得到∠BDE=∠BDA,再利用角平分線定理得到BE=AB=AC,根據(jù)的周長(zhǎng)為6求出AB=6,再根據(jù)勾股定理求出,即可求得的面積.【詳解】∵,∴AB⊥AD,∵,平分,∴DE=AD,∠BED=,∴∠BDE=∠BDA,∴BE=AB=AC,∵的周長(zhǎng)為6,∴DE+CD+CE=AC+CE=BC=6,∵∴,∴,,∴的面積=,故選:D.【點(diǎn)睛】此題考查角平分線定理的運(yùn)用,勾股定理求邊長(zhǎng),在利用角平分線定理時(shí)必須是兩個(gè)垂直一個(gè)平分同時(shí)運(yùn)用,得到到角兩邊的距離相等的結(jié)論.9.D解析:D【分析】過(guò)點(diǎn)C作CH⊥AB,連接CD,根據(jù)等腰三角形的三線合一的性質(zhì)及勾股定理求出CH,再利用即可求出答案.【詳解】如圖,過(guò)點(diǎn)C作CH⊥AB,連接CD,∵AC=BC,CH⊥AB,AB=8,∴AH=BH=4,∵AC=5,∴,∵,∴,∴,∴DE+DF=4.8,故選:D.【點(diǎn)睛】此題考查等腰三角形三線合一的性質(zhì),勾股定理解直角三角形,根據(jù)題意得到的思路是解題的關(guān)鍵,依此作輔助線解決問(wèn)題.10.D解析:D【分析】先根據(jù)勾股定理求出梯子的長(zhǎng),進(jìn)而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=0.72+2.42=6.25,在Rt△ABC中,∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,∴AB2+1.52=6.25,∴AB=±2,∵AB>0,∴AB=2米,∴小巷的寬度為:0.7+2=2.7(米).故選:D.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.11.D解析:D【分析】根據(jù)勾股定理的逆定理,三角形的內(nèi)角和定理,分別對(duì)每個(gè)選項(xiàng)進(jìn)行判斷,即可得到答案.【詳解】解:∵,得,符合勾股定理逆定理,則①正確;∵,得到,符合勾股定理逆定理,則②正確;∵∠A=∠B∠C,得∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正確;∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180°,∴,故④正確;∵,則⑤不能構(gòu)成直角三角形,故⑤錯(cuò)誤;∵,則⑥能構(gòu)成直角三角形,故⑥正確;∴能構(gòu)成直角三角形的有5個(gè);故選擇:D.【點(diǎn)睛】本題考查了勾股定理的逆定理,以及三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握用勾股定理的逆定理和三角形內(nèi)角和定理進(jìn)行判斷三角形是直角三角形.12.A解析:A【分析】先判斷△DBE是等腰直角三角形,根據(jù)勾股定理可推導(dǎo)得出BD=BE,故①正確;根據(jù)∠BHE和∠C都是∠HBE的余角,可得∠BHE=∠C,再由∠A=∠C,可得②正確;證明△BEH≌△DEC,從而可得BH=CD,再由AB=CD,可得③正確;利用已知條件不能得到④,據(jù)此即可得到選項(xiàng).【詳解】解:∵∠DBC=45°,DE⊥BC于E,∴在Rt△DBE中,BE2+DE2=BD2,BE=DE,∴BD=BE,故①正確;∵DE⊥BC,BF⊥DC,∴∠BHE和∠C都是∠HBE的余角,∴∠BHE=∠C,又∵在?ABCD中,∠A=∠C,∴∠A=∠BHE,故②正確;在△BEH和△DEC中,,∴△BEH≌△DEC,∴BH=CD,∵四邊形ABCD為平行四邊形,∴AB=CD,∴AB=BH,故③正確;利用已知條件不能得到△BCF≌△DCE,故④錯(cuò)誤,故選A.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)等,熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.13.C解析:C【分析】求出兩小邊的平方和長(zhǎng)邊的平方,再看看是否相等即可.【詳解】A、62+82=102,此時(shí)三角形是直角三角形,故本選項(xiàng)不符合題意;B、52+122=132,此時(shí)三角形是直角三角形,故本選項(xiàng)不符合題意;C、32+5262,此時(shí)三角形不是直角三角形,故本選項(xiàng)符合題意;D、,此時(shí)三角形是直角三角形,故本選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】本題主要考查了勾股定理逆定理,關(guān)鍵是掌握判斷一個(gè)三角形是不是直角三角形,必須滿足較小兩邊平方的和等于最大邊的平方才能做出判斷.14.C解析:C【分析】記第三邊為c,然后分c為直角三角形的斜邊和直角邊兩種情況,利用勾股定理求解即可.【詳解】解:記第三邊為c,若c為直角三角形的斜邊,則;若c為直角三角形的直角邊,則.故選:C.【點(diǎn)睛】本題考查了勾股定理,屬于基本題目,正確分類、熟練掌握勾股定理是解題的關(guān)鍵.15.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由題意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可證△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根據(jù)圖可知從B到E的走法有兩種,分別計(jì)算比較即可.【詳解】解:如圖所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC=∴CE=AC-AE=200,從B到E有兩種走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理.解題的關(guān)鍵是證明△ABC≌△DEA,并能比較從B到E有兩種走法.16.D解析:D【分析】利用等腰直角三角形的相關(guān)性質(zhì)運(yùn)用勾股定理以及對(duì)應(yīng)角度的關(guān)系來(lái)推導(dǎo)對(duì)應(yīng)選項(xiàng)的結(jié)論即可.【詳解】解:由AB=4可得AC=BC=4,則AE=3=DE,由勾股定理可得CD=2,①正確;BD=4-2,②正確;由∠A=∠EDF=45°,則2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正確;△DCE的周長(zhǎng)=CD+CE+DE=2+4,△BDF的周長(zhǎng)=BD+BF+DF=BD+AB=4+4-2=4+2,④正確;故正確的選項(xiàng)有4個(gè),故選:D.【點(diǎn)睛】本題主要考查等腰直角三角形的相關(guān)性質(zhì)以及勾股定理的運(yùn)用,本題涉及的等腰直角三角形、翻折、勾股定理以及邊角關(guān)系,需要熟練地掌握對(duì)應(yīng)性質(zhì)以及靈活的運(yùn)用.17.B解析:B【分析】作AD⊥BC,則D為BC的中點(diǎn),即BD=DC=2,根據(jù)勾股定理可以求得AD,則根據(jù)S=×BC×AD可以求得△ABC的面積.【詳解】解:作AD⊥BC,則D為BC的中點(diǎn),則BD=DC=2,∵AB=,且AD==4,∴△ABC的面積為S=×BC×AD=×4×4=8,故選:B.【點(diǎn)睛】本題考查了勾股定理的運(yùn)用,三角形面積的計(jì)算,本題中正確的運(yùn)用勾股定理求AD是解題的關(guān)鍵.18.A解析:A【分析】作于點(diǎn)D,設(shè),得,,結(jié)合題意,經(jīng)解方程計(jì)算得BD,再通過(guò)勾股定理計(jì)算得AD,即可完成求解.【詳解】如圖,作于點(diǎn)D設(shè),則∴,∴∵AB=10,AC=∴∴∴∴△ABC的面積故選:A.【點(diǎn)睛】本題考察了直角三角形、勾股定理、一元一次方程的知識(shí),解題的關(guān)鍵是熟練掌握勾股定理的性質(zhì),從而完成求解.19.A解析:A【分析】首先根據(jù)勾股定理得出圓弧的半徑,然后得出點(diǎn)A的坐標(biāo).【詳解】解:∴由圖可知:點(diǎn)A所表示的數(shù)為:故選:A【點(diǎn)睛】本題主要考查的就是數(shù)軸上點(diǎn)所表示的數(shù),屬于基礎(chǔ)題型.解決這個(gè)問(wèn)題的關(guān)鍵就是求出斜邊的長(zhǎng)度.在數(shù)軸上兩點(diǎn)之間的距離是指兩點(diǎn)所表示的數(shù)的差的絕對(duì)值.20.C解析:C【分析】過(guò)作于,得出,,求出,根據(jù)三角形內(nèi)角和定理求出,即可判斷①;根據(jù)角平分線性質(zhì)求出,,即可判斷④和⑤;由勾股定理求出,,即可判斷③;根據(jù)證,推出,同理得出,即可判斷②.【詳解】解:過(guò)作于,與的平分線相交于邊上的點(diǎn),,,,,,,故①正確;平分,,,,同理,,故⑤正確;到的距離等于的一半,故④錯(cuò)誤;由勾股定理得:,,又,,,同理,,故③正確;在和中,,同理,,故②正確;故選:.【點(diǎn)睛】本題考查了角平分線性質(zhì),垂直定義,直角梯形,勾股定理,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生運(yùn)用定理進(jìn)行推理的能力.21.C解析:C【分析】利用勾股定理的逆定理:如果三角形兩條邊的平方和等于第三邊的平方,那么這個(gè)三角形就是直角三角形.最長(zhǎng)邊所對(duì)的角為直角.由此判定即可.【詳解】解:A、因?yàn)?2+72≠122,所以三條線段不能組成直角三角形;B、因?yàn)?2+32≠42,所以三條線段不能組成直角三角形;C、因?yàn)?2+2=22,所以三條線段能組成直角三角形;D、因?yàn)?2+112≠122,所以三條線段不能組成直角三角形.故選C.【點(diǎn)睛】此題考查勾股定理逆定理的運(yùn)用,注意數(shù)據(jù)的計(jì)算.22.C解析:C【分析】根據(jù)等腰三角形的三線合一得出∠ADB=90°,再根據(jù)勾股定理得出BD的長(zhǎng),即可得出BC的長(zhǎng).【詳解】在△ABC中,AB=AC,AD是∠BAC的平分線,ADBC,BC=2BD.∠ADB=90°在Rt△ABD中,根據(jù)勾股定理得:BD===4BC=2BD=2×4=8.故選C.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)及勾股定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.23.D解析:D【解析】試題解析:當(dāng)3和5都是直角邊時(shí),第三邊長(zhǎng)為:=;當(dāng)5是斜邊長(zhǎng)時(shí),第三邊長(zhǎng)為:=4.故選D.24.C解析:C【分析】根據(jù)題意可設(shè)折斷處離地面的高度OA是x尺,折斷處離竹梢AB是(10-x)尺,結(jié)合勾股定理即可得出折斷處離地面的高度.【詳解】設(shè)折斷處離地面的高度OA是x尺,則折斷處離竹梢AB是(10-x)尺,由勾股定理可得:即:,解得:x=4.2故折斷處離地面的高度OA是4.2尺.故答案選:C.【點(diǎn)睛】本題主要考查直角三角形勾股定理的應(yīng)用,解題的關(guān)鍵是熟練運(yùn)用勾股定理.25.B解析:B【分析】將正方體的左側(cè)面與前面展開,構(gòu)成一個(gè)長(zhǎng)方形,用勾股定理求出距離即可.【詳解】解:如圖,AB=.故選:B.【點(diǎn)睛】此題求最短路徑,我們將平面展開,組成一個(gè)直角三角形,利用勾股定理求出斜邊就可以了.26.C解析:C【分析】作出等邊三角形一邊
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 大信櫥柜專業(yè)知識(shí)培訓(xùn)課件
- 施工技術(shù)創(chuàng)新實(shí)施方案
- 公司提琴制作工前沿技術(shù)考核試卷及答案
- 戶外化妝品知識(shí)培訓(xùn)課件
- 公司拖拉機(jī)柴油發(fā)動(dòng)機(jī)裝試工技能比武考核試卷及答案
- 公司硬質(zhì)合金精加工工崗位操作技能考核試卷及答案
- 公司蠟油渣油加氫裝置操作工持續(xù)學(xué)習(xí)考核試卷及答案
- 大眾polo培訓(xùn)課件
- 公司膠囊劑工物料報(bào)廢處理規(guī)范考核試卷及答案
- 公司飼草種子繁育工新員工考核試卷及答案
- 2025-2030中國(guó)聚乙烯醇縮丁醛(PVB)中間層行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 固收理財(cái)合同協(xié)議
- 配送生鮮公司管理制度
- 食堂每日出入庫(kù)明細(xì)登記表模板
- JJF(新) 129-2024 阻容法煙氣含濕量測(cè)定儀校準(zhǔn)規(guī)范
- CVC堵管的處理及預(yù)防
- 2025高考復(fù)習(xí)必背譯林版高中英語(yǔ)全七冊(cè)單詞表
- 2025年人教新課標(biāo)高一地理上冊(cè)月考試卷
- 《臨床心胸外科培訓(xùn)》課件
- 店長(zhǎng)周工作總結(jié)數(shù)據(jù)報(bào)表模板
- “五育并舉”視域下美育對(duì)工科大學(xué)生審美能力的提升研究
評(píng)論
0/150
提交評(píng)論