




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆江蘇省江都區(qū)黃思中學蘇科版數(shù)學九年級第一學期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在一個不透明的布袋中裝有紅色.白色玻璃球共40個,除顏色外其他完全相同,小明通過多次摸球試驗后發(fā)現(xiàn),其中摸到白色球的頻率穩(wěn)定在85%左右,則口袋中紅色球可能有().A.34個 B.30個 C.10個 D.6個2.若點都是反比例函數(shù)的圖象上的點,并且,則下列各式中正確的是(()A. B. C. D.3.已知關于的一元二次方程有兩個實數(shù)根,,則代數(shù)式的值為()A. B. C. D.4.如圖,和都是等腰直角三角形,,,的頂點在的斜邊上,、交于,若,,則的長為()A. B. C. D.5.如圖,在△ABC中,點D是BC的中點,點E是AC的中點,若DE=3,則AB等于()A.4 B.5 C.5.5 D.66.一元二次方程x2-4x-1=0配方可化為()A.(x+2)2=3 B.(x+2)2=5 C.(x-2)2=3 D.(x-2)2=57.下列圖形中,不是中心對稱圖形的是()A. B. C. D.8.如圖,等腰與等腰是以點為位似中心的位似圖形,位似比為,則點的坐標是()A. B. C. D.9.設計一個摸球游戲,先在一個不透明的盒子中放入個白球,如果希望從中任意摸出個球是白球的概率為,那么應該向盒子中再放入多少個其他顏色的球.(游戲用球除顏色外均相同)()A. B. C. D.10.某藥品經(jīng)過兩次降價,每瓶零售價由112元降為63元.已知兩次降價的百分率相同.要求每次降價的百分率,若設每次降價的百分率為x,則得到的方程為()A.112(1﹣x)2=63B.112(1+x)2=63C.112(1﹣x)=63D.112(1+x)=6311.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°12.給出四個實數(shù),2,0,-1,其中負數(shù)是(
)A. B.2 C.0 D.-1二、填空題(每題4分,共24分)13.拋物線的開口方向是_____.14.在△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,tan∠BPC=_______________.15.已知中,,,,則的長為__________.16.方程x2+2x+m=0有兩個相等實數(shù)根,則m=___________.17.設m、n是一元二次方程x2+3x-7=0的兩個根,則m2+4m+n=_____.18.某工廠去年10月份機器產(chǎn)量為500臺,12月份的機器產(chǎn)量達到720臺,設11、12月份平均每月機器產(chǎn)量增長的百分率為x,則根據(jù)題意可列方程_______________三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,拋物線與軸交于兩點,點.(1)當時,求拋物線的頂點坐標及線段的長度;(2)若點關于點的對稱點恰好也落在拋物線上,求的值.20.(8分)如圖1,點A是x軸正半軸上的動點,點B的坐標為(0,4),M是線段AB的中點.將點M繞點A順時針方向旋轉900得到點C,過點C作x軸的垂線,垂足為F,過點B作y軸的垂線與直線CF相交于點E,點D是點A關于直線CF的對稱點.連結AC,BC,CD,設點A的橫坐標為t,(1)當t=2時,求CF的長;(2)①當t為何值時,點C落在線段CD上;②設△BCE的面積為S,求S與t之間的函數(shù)關系式;(3)如圖2,當點C與點E重合時,將△CDF沿x軸左右平移得到,再將A,B,為頂點的四邊形沿剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出符合上述條件的點坐標,21.(8分)有一張長,寬的長方形硬紙片(如圖1),截去四個全等的小正方形之后,折成無蓋的紙盒(如圖2).若紙盒的底面積為,求紙盒的高.22.(10分)某商店銷售一種商品,每件成本8元,規(guī)定每件商品售價不低于成本,且不高于20元,經(jīng)市場調查每天的銷售量y(件)與每件售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:售價x(元件)1011121314x銷售量y(件)100908070(1)將上面的表格填充完整;(2)設該商品每天的總利潤為w元,求w與x之間的函數(shù)表達式;(3)計算(2)中售價為多少元時,獲得最大利潤,最大利潤是多少?23.(10分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.24.(10分)如圖,一根豎直的木桿在離地面3.1處折斷,木桿頂端落在地面上,且與地面成38°角,則木桿折斷之前高度約為__________.(參考數(shù)據(jù):)25.(12分)在平面直角坐標系中,拋物線經(jīng)過點A、B、C,已知A(-1,0),B(3,0),C(0,-3).(1)求此拋物線的函數(shù)表達式;(2)若P為線段BC上一點,過點P作軸的平行線,交拋物線于點D,當△BCD面積最大時,求點P的坐標;(3)若M(m,0)是軸上一個動點,請求出CM+MB的最小值以及此時點M的坐標.26.(1)解方程:(2)如圖,正六邊形的邊長為2,以點為圓心,長為半徑畫弧,求弧的長.
參考答案一、選擇題(每題4分,共48分)1、D【解析】由頻數(shù)=數(shù)據(jù)總數(shù)×頻率計算即可.【詳解】解:∵摸到白色球的頻率穩(wěn)定在85%左右,∴口袋中白色球的頻率為85%,故白球的個數(shù)為40×85%=34個,∴口袋中紅色球的個數(shù)為40-34=6個故選D.本題考查了利用頻率估計概率,難度適中.大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率來估計概率,這個固定的近似值就是這個事件的概率.2、B【詳解】解:根據(jù)題意可得:∴反比例函數(shù)處于二、四象限,則在每個象限內為增函數(shù),且當x<0時y>0,當x>0時,y<0,∴<<.3、B【分析】由題意根據(jù)根與系數(shù)的關系以及方程的解的概念即可求出答案.【詳解】解:由根與系數(shù)的關系可知:,∴1+n=-m,n=3,∴m=-4,n=3,∴.故選:B.本題考查根與系數(shù)的關系,解題的關鍵是熟練運用根與系數(shù)的關系求值與代入求值.4、B【分析】連接BD,自F點分別作,交AD、BD于G、H點,通過證明,可得,根據(jù)勾股定理求出AB的長度,再根據(jù)角平分線的性質可得,根據(jù)三角形面積公式可得,代入中即可求出BF的值.【詳解】如圖,連接BD,自F點分別作,交AD、BD于G、H點∵和都是等腰直角三角形∴在△ECA和△DCB中在Rt△ADB中,∴DF是∠ADB的角平分線∵△ADF底邊AF上的高h與△BDF底邊BF上的高h相同故答案為:B.本題考查了三角形的綜合問題,掌握等腰直角三角形的性質、全等三角形的性質以及判定定理、勾股定理、角平分線的性質、三角形面積公式是解題的關鍵.5、D【分析】由兩個中點連線得到DE是中位線,根據(jù)DE的長度即可得到AB的長度.【詳解】∵點D是BC的中點,點E是AC的中點,∴DE是△ABC的中位線,∴AB=2DE=6,故選:D.此題考查三角形的中位線定理,三角形兩邊中點的連線是三角形的中位線,平行于三角形的第三邊,且等于第三邊的一半.6、D【分析】移項,配方,即可得出選項.【詳解】x2?4x?1=0,x2?4x=1,x2?4x+4=1+4,(x?2)2=5,故選:D.本題考查了解一元二次方程的應用,能正確配方是解此題的關鍵.7、B【分析】將一個圖形繞某一點旋轉180°后能與自身完全重合的圖形是中心對稱圖形,根據(jù)定義依次判斷即可得到答案.【詳解】解:A、是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項正確;C、是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項錯誤;故選:B.此題考查中心對稱圖形的定義,熟記定義并掌握各圖形的特點是解題的關鍵.8、A【分析】根據(jù)位似比為,可得,從而得:CE=DE=12,進而求得OC=6,即可求解.【詳解】∵等腰與等腰是以點為位似中心的位似圖形,位似比為,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴點的坐標是:.故選A.本題主要考查位似圖形的性質,掌握位似圖形的位似比等于相似比,是解題的關鍵.9、A【分析】利用概率公式,根據(jù)白球個數(shù)和摸出個球是白球的概率可求得盒子中應有的球的個數(shù),再減去白球的個數(shù)即可求得結果.【詳解】解:∵盒子中放入了2個白球,從盒子中任意摸出個球是白球的概率為,∴盒子中球的總數(shù)=,∴其他顏色的球的個數(shù)為6?2=4,故選:A.本題考查了概率公式的應用,靈活運用概率=所求情況數(shù)與總情況數(shù)之比是解題的關鍵.10、A【解析】根據(jù)題意可得等量關系:原零售價×(1-百分比)(1-百分比)=降價后的售價,然后根據(jù)等量關系列出方程即可.【詳解】設每次降價的百分率為x,由題意得:112(1?x)2=63,故答案選:A.本題考查的知識點是由實際問題抽象出一元二次方程,解題的關鍵是熟練的掌握由實際問題抽象出一元二次方程.11、B【解析】只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.本題考查圓周角定理,等邊三角形的判定等知識,解題的關鍵是學會利用數(shù)形結合的首先解決問題,屬于中考??碱}型.12、D【分析】根據(jù)負數(shù)的定義,負數(shù)小于0即可得出答案.【詳解】根據(jù)題意:負數(shù)是-1,故答案為:D.此題主要考查了實數(shù),正確把握負數(shù)的定義是解題關鍵.二、填空題(每題4分,共24分)13、向上【分析】根據(jù)二次項系數(shù)的符號即可確定答案.【詳解】其二次項系數(shù)為2,且二次項系數(shù):2>0,所以開口方向向上,故答案為:向上.本題考查了二次函數(shù)的性質,熟知二次函數(shù)y=ax2+bx+c(a≠0)圖象的開口方向與a的值有關是解題的關鍵.14、【詳解】試題分析:如圖,過點A作AH⊥BC于點H,∵AB=AC,∴AH平分∠BAC,且BH=BC=4.又∵∠BPC=∠BAC,∴∠BAH=∠BPC.∴tan∠BPC=tan∠BAH.在Rt△ABH中,AB=5,BH=4,∴AH=1.∴tan∠BAH=.∴tan∠BPC=.考點:1.等腰三角形的性質;2.銳角三角函數(shù)定義;1.轉化思想的應用.15、5或1【分析】作交BC于D,分兩種情況:①D在線段BC上;②D在線段BC的延長線上,根據(jù)銳角三角函數(shù)值和勾股定理求解即可.【詳解】作交BC于D①D在線段BC上,如圖∵∴∴,在Rt△ACD中,由勾股定理得∴②D在線段BC的延長線上,如圖∵∴∴,在Rt△ACD中,由勾股定理得∴故答案為:5或1.本題考查了解三角形的問題,掌握銳角的三角函數(shù)以及勾股定理是解題的關鍵.16、1【分析】當△=0時,方程有兩個相等實數(shù)根.【詳解】由題意得:△=b2-4ac=22-4m=0,則m=1.故答案為1.本題考察了根的判別式與方程根的關系.17、1.【分析】求代數(shù)式的值,一元二次方程的解,一元二次方程根與系數(shù)的關系.【詳解】解:∵m、n是一元二次方程x2+2x-7=0的兩個根,∴m2+2m-7=0,即m2+2m=7;m+n=-2.∴m2+1m+n=(m2+2m)+(m+n)=7-2=1.故答案為:118、【分析】根據(jù)增長率公式即可列出方程.【詳解】解:根據(jù)題意可列方程為:,故答案為:.本題考查一元二次方程的應用——增長率問題.若連續(xù)兩期增長率相同,那么a(1+x)2=b,其中a為變化前的量,b為變化后的量,增長率為x.三、解答題(共78分)19、(1)頂點坐標為(3,9),OA=6;(2)m=2【解析】(1)把m代入拋物線,根據(jù)二次函數(shù)的圖像與性質即可求出頂點,與x軸的交點,即可求解;(2)先用含m的式子表示A點坐標,再根據(jù)對稱性得到A’的坐標,再代入拋物線即可求出m的值.【詳解】解:(1)當y=0時,,即O(0,0),A(6,0)∴OA=6把x=3代入y=-32+69∴頂點坐標為(3,9)(2)當y=0時,,即A(m,0)∵點A關于點B的對稱點A′∴A′(-m,-8)把A′(-m,-8)代入得m1=2,m2=-2(舍去)∴m=2.此題主要考查二次函數(shù)的圖像與性質,解題的關鍵是熟知坐標的對稱性.20、(2)CF=2;(2)①;②;(3)點的坐標為:(22,2),(8,2),(2,2).【分析】(2)由Rt△ABO∽Rt△CAF即可求得CF的長.(2)①點C落在線段CD上,可得Rt△CDD∽Rt△BOD,從而可求t的值.②由于當點C與點E重合時,CE=2,,因此,分和兩種情況討論.(3)分三種情況作出圖形討論即可得到答案.【詳解】解:(2)當t=2時,OA=2,∵點B(0,2),∴OB=2.又∵∠BAC=900,AB=2AC,∴Rt△ABO∽Rt△CAF.∴,CF=2.(2)①當OA=t時,∵Rt△ABO∽Rt△CAF,∴.∴.∵點C落在線段CD上,∴Rt△CDD∽Rt△BOD.∴,整理得.解得(舍去).∴當時,點C落在線段CD上.②當點C與點E重合時,CE=2,可得.∴當時,;當時,.綜上所述,S與t之間的函數(shù)關系式為.(3)(3)點的坐標為:(22,2),(8,2),(2,2).理由如下:如圖2,當時,點的坐標為(22,0),根據(jù),為拼成的三角形,此時點的坐標為(22,,2).如圖2,當點與點A重合時,點的坐標為(8,0),根據(jù),為拼成的三角形,此時點的坐標為(8,,2).如圖3,當時,點的坐標為(2,0),根據(jù),為拼成的三角形,此時點的坐標為(2,,2).∴點的坐標為:(22,2),(8,2),(2,2).21、紙盒的高為.【分析】設紙盒的高是,根據(jù)題意,其底面的長寬分別為(40-2x)和(30-2x),根據(jù)長方形面積公式列方程求解即可.【詳解】解:設紙盒的高是.依題意,得.整理得.解得,(不合題意,舍去).答:紙盒的高為.本題考查一元二次方程的應用,根據(jù)題意用含x的式子表示底面的長和寬,正確列方程,解方程是本題的解題關鍵.22、(1)見解析;(2)w=﹣10x2+280x﹣1600;(3)售價為14元時,獲得最大利潤,最大利潤是360元.【分析】(1)設y=kx+b,由待定系數(shù)法可列出方程組:,解得:則y=﹣10x+200,當x=14時,y=60.(2)由題意得,w與x之間的函數(shù)表達式為:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售價為14元時,獲得最大利潤,最大利潤是360元.【詳解】解:(1)設銷售量y(件)與每件售價x(元)滿足一次函數(shù)關系為y=kx+b,∴,解得:,∴銷售量y(件)與每件售價x(元)滿足一次函數(shù)關系為y=﹣10x+200,當x=14時,y=60,故答案為:60,﹣10x+200;(2)由題意得,w與x之間的函數(shù)表達式為:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售價為14元時,獲得最大利潤,最大利潤是360元.本題的考點是一次函數(shù)及二次函數(shù)的綜合應用.方法是根據(jù)題意列出函數(shù)式,再根據(jù)二次函數(shù)的性質求解.23、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據(jù)OE的解析式表示點G的坐標,表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應用,相似三角形的判定與性質以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.24、8.1m【分析】由題意得,在直角三角形中,知道了兩直角邊,運用勾股定理即可求出斜邊,從而得出這棵樹折斷之前的高度.【詳解】解:如圖:,∴,∴木桿折斷之前高度故答案為m本題考查勾股定理的應用,熟練掌握運算法則是解題關鍵.25、(1);(2)P(,),面積最大為;(3)CM+MB最小值為,M(,0)【分析】(1)利用待定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年開封教投教育集團招聘教師116人考前自測高頻考點模擬試題及答案詳解(各地真題)
- 2025廣東湛江市霞山區(qū)司法局招聘司法協(xié)理員擬聘用人員(第一批)模擬試卷附答案詳解
- 2025福建農信春季招聘194人報考須知考前自測高頻考點模擬試題及完整答案詳解1套
- 2025貴州人才博覽會專場活動貴州茅臺酒廠(集團)技術開發(fā)有限公司引進人才模擬試卷附答案詳解(典型題)
- 2025江蘇興化市招聘教師67人考前自測高頻考點模擬試題及答案詳解(名師系列)
- 2025年度海原縣農業(yè)農村局公開招聘基層農技推廣體系改革與建設項目特聘農技員(防疫員)招聘模擬試卷及一套答案詳解
- 2025能源控股集團所屬遼能股份招聘考前自測高頻考點模擬試題及答案詳解(必刷)
- 2025湖北孝感高新區(qū)招聘教師35人模擬試卷及答案詳解(易錯題)
- 2025北京首都師范大學附屬育新學校招聘12人模擬試卷含答案詳解
- 2025年濰坊濱海經(jīng)濟技術開發(fā)區(qū)公開招聘中學教師(12人)考前自測高頻考點模擬試題及答案詳解(必刷)
- 2025年京東集團校招面試題與答案
- 浙江省A9協(xié)作體2025-2026學年高二上學期暑假返校聯(lián)考英語試卷(含解析)
- 2025年海水淡化處理行業(yè)研究報告及未來行業(yè)發(fā)展趨勢預測
- Unit2詞匯短語英譯中中譯英-仁愛科普版英語八年級上冊
- 羊了個羊教學課件
- 企業(yè)價值創(chuàng)造培訓
- 河南省汝陽縣2025年上半年事業(yè)單位公開招聘教師崗試題含答案分析
- 子癇前期預測與預防指南2025版
- 醫(yī)院未來學科發(fā)展規(guī)劃提案
- 《騎鵝旅行記》教學課件
- 2025年匹克球裁判試題及答案
評論
0/150
提交評論