2026屆黑龍江省哈爾濱市十七中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2026屆黑龍江省哈爾濱市十七中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2026屆黑龍江省哈爾濱市十七中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2026屆黑龍江省哈爾濱市十七中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2026屆黑龍江省哈爾濱市十七中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆黑龍江省哈爾濱市十七中學(xué)數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.我國傳統(tǒng)文化中的“福祿壽喜”圖(如圖)由四個圖案構(gòu)成.這四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2.一元二次方程的正根的個數(shù)是()A. B. C. D.不確定3.一元二次方程x2+x+1=0的根的情況是().A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.以上說法都不對4.下列圖形中,不是中心對稱圖形的是()A. B. C. D.5.正五邊形的每個外角度數(shù)為()A. B. C. D.6.如圖,點O是△ABC的內(nèi)切圓的圓心,若∠A=80°,則∠BOC為()A.100° B.130°C.50° D.65°7.關(guān)于x的一元二次方程x2+bx+c=0的兩個實數(shù)根分別為﹣2和3,則()A.b=1,c=﹣6 B.b=﹣1,c=﹣6C.b=5,c=﹣6 D.b=﹣1,c=68.已知圓錐的母線長是12,它的側(cè)面展開圖的圓心角是120°,則它的底面圓的直徑為()A.2 B.4 C.6 D.89.已知,是關(guān)于的一元二次方程的兩個不相等的實數(shù)根,且滿足,則的值是()A.3 B.1 C.3或 D.或110.如圖,半徑為3的⊙O內(nèi)有一點A,OA=,點P在⊙O上,當(dāng)∠OPA最大時,PA的長等于()A. B. C.3 D.2二、填空題(每小題3分,共24分)11.若拋物線y=2x2+6x+m與x軸有兩個交點,則m的取值范圍是_____.12.某數(shù)學(xué)興趣小組利用太陽光測量一棵樹的高度(如圖),在同一時刻,測得樹的影長為6米,小明的影長為1米,已知小明的身高為1.5米,則樹高為_________米.13.三角形兩邊長分別為3和6,第三邊的長是方程x2﹣13x+36=0的根,則該三角形的周長為_____.14.如圖,矩形的面積為,它的對角線與雙曲線相交于點,且,則________.15.如圖,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于點D,則△ABD與△ADC的面積比為________.16.我市博覽館有A,B,C三個入口和D,E兩個出口,小明入館游覽,他從A口進(jìn)E口出的概率是____.17.如圖,從一塊直徑是的圓形鐵皮上剪出一個圓心角是的扇形,如果將剪下來的扇形圍成一個圓錐,那么圓錐的底面圓的半徑為___________.18.如圖,在中,,,,則的長為_____.三、解答題(共66分)19.(10分)臺州人民翹首以盼的樂清灣大橋于2018年9月28日正式通車,經(jīng)統(tǒng)計分析,大橋上的車流速度(千米/小時)是車流密度(輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到220輛/千米的時候就造成交通堵塞,此時車流速度為0千米/小時;當(dāng)車流密度不超過20輛/千米,車流速度為80千米/小時,研究證明:當(dāng)時,車流速度是車流密度的一次函數(shù).(1)求大橋上車流密度為50/輛千米時的車流速度;(2)在某一交通高峰時段,為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應(yīng)把大橋上的車流密度控制在什么范圍內(nèi)?(3)車流量(輛/小時)是單位時間內(nèi)通過橋上某觀測點的車輛數(shù),即:車流量車流速度車流密度,求大橋上車流量的最大值.20.(6分)如圖,點的坐標(biāo)為,把點繞坐標(biāo)原點逆時針旋轉(zhuǎn)后得到點.(1)求點經(jīng)過的弧長;(結(jié)果保留)(2)寫出點的坐標(biāo)是________.21.(6分)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).(1)請畫出將△ABC向下平移5個單位后得到的△A1B1C1;(2)將△ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B旋轉(zhuǎn)到點B2所經(jīng)過的路徑長.22.(8分)如圖所示,折疊長方形一邊AD,點D落在BC邊的點F處,已知BC=10厘米,AB=8厘米,求FC的長.23.(8分)(1)問題發(fā)現(xiàn):如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B、C重合)將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,則線段BD與CE的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:如圖2,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點A旋轉(zhuǎn),使點D落在BC的延長線上時,連接EC,寫出此時線段AD,BD,CD之間的等量關(guān)系,并證明;(3)拓展延仲:如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,請直接寫出AF的長.24.(8分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD⊥DC于D,且AC平分∠DAB.延長DC交AB的延長線于點P.(1)求證:PC2=PA?PB;(2)若3AC=4BC,⊙O的直徑為7,求線段PC的長.25.(10分)關(guān)于x的方程的解為正數(shù),且關(guān)于y的不等式組有解,求符合題意的整數(shù)m.26.(10分)如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(1,1),B(4,0),C(4,4).(1)按下列要求作圖:①將△ABC向左平移4個單位,得到△A1B1C1;②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A1B1C1.(1)求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.解:A、不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B、是軸對稱圖形,也是中心對稱圖形.故正確;C、是軸對稱圖形,不是中心對稱圖形.故錯誤;D、不是軸對稱圖形,也不是中心對稱圖形.故錯誤.故選B.點睛:掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.2、B【分析】解法一:根據(jù)一元二次方程的解法直接求解判斷正根的個數(shù);解法二:先將一元二次方程化為一般式,再根據(jù)一元二次方程的根與系數(shù)的關(guān)系即可判斷正根的個數(shù).【詳解】解:解法一:化為一般式得,,∵a=1,b=3,c=?4,則,∴方程有兩個不相等的實數(shù)根,∴,即,,所以一元二次方程的正根的個數(shù)是1;解法二:化為一般式得,,,方程有兩個不相等的實數(shù)根,,則、必為一正一負(fù),所以一元二次方程的正根的個數(shù)是1;故選B.本題考查了一元二次方程的解法,熟練掌握解一元二次方程的步驟是解題的關(guān)鍵;如果只判斷正根或負(fù)根的個數(shù),也可靈活運(yùn)用一元二次方程的根與系數(shù)的關(guān)系進(jìn)行判斷.3、C【分析】先計算出根的判別式的值,根據(jù)的值就可以判斷根的情況.【詳解】=b2-4ac=1-4×1×1=-3∵-3<0∴原方程沒有實數(shù)根故選:C.本題考查了一元二次方程的知識;解題的關(guān)鍵是熟練掌握一元二次方程判別式的性質(zhì),從而完成求解.4、A【詳解】解:根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合.因此,A、不是中心對稱圖形,故本選項正確;B、是中心對稱圖形,故本選項錯誤;C、是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項錯誤.故選A.5、B【解析】利用多邊形的外角性質(zhì)計算即可求出值.【詳解】360°÷5=72°,故選:B.此題考查了多邊形的內(nèi)角與外角,熟練掌握多邊形的外角性質(zhì)是解本題的關(guān)鍵.6、B【分析】根據(jù)三角形的內(nèi)切圓得出∠OBC=∠ABC,∠OCB=∠ACB,根據(jù)三角形的內(nèi)角和定理求出∠ABC+∠ACB的度數(shù),進(jìn)一步求出∠OBC+∠OCB的度數(shù),根據(jù)三角形的內(nèi)角和定理求出即可.【詳解】∵點O是△ABC的內(nèi)切圓的圓心,∴∠OBC=∠ABC,∠OCB=∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故選B.本題主要考查對三角形的內(nèi)角和定理,三角形的內(nèi)切圓與內(nèi)心等知識點的理解和掌握,能求出∠OBC+∠OCB的度數(shù)是解答此題的關(guān)鍵.7、B【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系得到﹣2+3=﹣b,﹣2×3=c,即可得到b與c的值.【詳解】由一元二次方程根與系數(shù)的關(guān)系得:﹣2+3=﹣b,﹣2×3=c,∴b=﹣1,c=﹣6故選:B.本題主要考查一元二次方程根與系數(shù)的關(guān)系,掌握一元二次方程ax2+bx+c=0的兩個根滿足,是解題的關(guān)鍵.8、D【分析】根據(jù)圓錐側(cè)面展開圖的圓心角與半徑(即圓錐的母線的長度)求得的弧長,就是圓錐的底面的周長,然后根據(jù)圓的周長公式l=2πr解出r的值即可.【詳解】試題解析:設(shè)圓錐的底面半徑為r圓錐的側(cè)面展開扇形的半徑為12,∵它的側(cè)面展開圖的圓心角是∴弧長即圓錐底面的周長是解得,r=4,∴底面圓的直徑為1.故選:D.本題考查了圓錐的計算.正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.9、A【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系,計算出、再代入分式計算,即可求得.【詳解】解:由根與系數(shù)的關(guān)系得:,,∴即,解得:或,而當(dāng)時,原方程△,無實數(shù)根,不符合題意,應(yīng)舍去,∴的值為1.故選A.本題考查一元二次方程中根與系數(shù)的關(guān)系應(yīng)用,難度不大,求得結(jié)果后需進(jìn)行檢驗是順利解題的關(guān)鍵.10、B【解析】如圖所示:∵OA、OP是定值,∴在△OPA中,當(dāng)∠OPA取最大值時,PA取最小值,∴PA⊥OA時,PA取最小值;在直角三角形OPA中,OA=3√,OP=3,∴PA=故選B.點睛:本題考查了垂徑定理、圓周角定理、勾股定理的應(yīng)用.解答此題的關(guān)鍵是找出“PA⊥OA時,∠OPA最大”這一隱含條件.當(dāng)PA⊥OA時,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.二、填空題(每小題3分,共24分)11、【分析】由拋物線與x軸有兩個交點,可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=2x2+6x+m與x軸有兩個交點,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案為:m.本題考查了拋物線與x軸的交點,牢記“當(dāng)△=b2﹣4ac>0時,拋物線與x軸有2個交點”是解答本題的關(guān)鍵.12、1【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,對應(yīng)比值相等進(jìn)而得出答案.【詳解】解:根據(jù)相同時刻的物高與影長成比例.設(shè)樹的高度為,則,解得:.故答案為:1.此題考查相似三角形的應(yīng)用,解題關(guān)鍵在于掌握其性質(zhì)定義.13、13【分析】利用因式分解法解方程,得到,,再利用三角形的三邊關(guān)系進(jìn)行判斷,然后計算三角形的周長即可.【詳解】解:∵,∴,∴,,∵,∴不符合題意,舍去;∴三角形的周長為:;故答案為:13.本題考查了解一元二次方程,以及三角形的三邊關(guān)系的應(yīng)用,解題的關(guān)鍵是正確求出第三邊的長度,以及掌握三角形的三邊關(guān)系.14、12【解析】試題分析:由題意,設(shè)點D的坐標(biāo)為(x,y),則點B的坐標(biāo)為(,),所以矩形OABC的面積,解得∵圖象在第一象限,∴.考點:反比例系數(shù)k的幾何意義點評:反比例系數(shù)k的幾何意義是初中數(shù)學(xué)的重點,是中考常見題,一般難度不大,需熟練掌握.15、1:1【分析】根據(jù)∠BAC=90°,可得∠BAD+∠CAD=90°,再根據(jù)垂直的定義得到∠ADB=∠CDA=90°,利用三角形的內(nèi)角和定理可得∠B+∠BAD=90°,根據(jù)同角的余角相等得到∠B=∠CAD,利用兩對對應(yīng)角相等兩三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根據(jù)相似三角形的面積比等于相似比(對應(yīng)邊的之比)的平方即可求出結(jié)果.【詳解】:∵∠BAC=90°,

∴∠BAD+∠CAD=90°,

又∵AD⊥BC,

∴∠ADB=∠CDA=90°,

∴∠B+∠BAD=90°,

∴∠B=∠CAD,又∠ADB=∠CDA=90°,

∴△ABD∽△CAD,

∴,

∵∠B=60°,

∴,

∴.

故答案為1:1.本題考查了相似三角形的判定與性質(zhì),熟練掌握相似比即為對應(yīng)邊之比,周長比等于相似比,面積之比等于相似比的平方是解決問題的關(guān)鍵.16、.【解析】根據(jù)題意作出樹狀圖,再根據(jù)概率公式即可求解.【詳解】根據(jù)題意畫樹形圖:共有6種等情況數(shù),其中“A口進(jìn)E口出”有一種情況,從“A口進(jìn)E口出”的概率為;故答案為:.此題主要考查概率的計算,解題的關(guān)鍵是依題意畫出樹狀圖.17、【分析】根據(jù)題意可知扇形ABC圍成圓錐后的底面周長就是弧BC的弧長,再根據(jù)弧長公式和圓周長公式來求解.【詳解】解:作于點,連結(jié)OA、BC,∵∠BAC=90°∴BC是直徑,OB=OC,,圓錐的底面圓的半徑故答案為:本題考查了扇形圍成圓錐形,圓錐的底面圓的周長就是原來扇形的弧長,找到它們的關(guān)系是解題的關(guān)鍵.18、【解析】過A作AD垂直于BC,在直角三角形ABD中,利用銳角三角函數(shù)定義求出AD的長,在直角三角形ACD中,利用銳角三角函數(shù)定義求出CD的長,再利用勾股定理求出AC的長即可.【詳解】解:過作,在中,,,∴,在中,,∴,即,根據(jù)勾股定理得:,故答案為此題考查了解直角三角形,涉及的知識有:銳角三角函數(shù)定義,以及勾股定理,熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.三、解答題(共66分)19、(1)車流速度68千米/小時;(2)應(yīng)把大橋上的車流密度控制在20千米/小時到70千米/小時之間;(3)車流量y取得最大值是每小時4840輛【分析】(1)設(shè)車流速度與車流密度的函數(shù)關(guān)系式為v=kx+b,列式求出函數(shù)解析式,將x=50代入即可得到答案;(2)根據(jù)題意列不等式組即可得到答案;(3)分兩種情況:、時分別求出y的最大值即可.【詳解】(1)設(shè)車流速度與車流密度的函數(shù)關(guān)系式為v=kx+b,由題意,得,解得,∴當(dāng)時,車流速度是車流密度的一次函數(shù)為,當(dāng)x=50時,(千米/小時),∴大橋上車流密度為50/輛千米時的車流速度68千米/小時;(2)由題意得,解得20<x<70,符合題意,∴為使大橋上的車流速度大于60千米/小時且小于80千米/小時,應(yīng)把大橋上的車流密度控制在20千米/小時到70千米/小時之間;(3)由題意得y=vx,當(dāng)時,y=80x,∵k=80>0,∴y隨x的增大而增大,∴當(dāng)x=20時,y有最大值1600,當(dāng)時,y,當(dāng)x=110時,y有最大值4840,∵4840>1600,∴當(dāng)車流密度是110輛/千米,車流量y取得最大值是每小時4840輛.此題考查待定系數(shù)法求一次函數(shù)的解析式,一元一次不等式組的實際應(yīng)用,二次函數(shù)最大值的確定,正確掌握各知識點并熟練解題是關(guān)鍵.20、(1);(2)【分析】(1)過點P作x軸的垂線,求出OP的長,由弧長公式可求出弧長;(2)作PA⊥x軸于A,QB⊥x軸于B,由旋轉(zhuǎn)的性質(zhì)得:∠POQ=90°,OQ=OP,由AAS證明△OBQ≌△PAO,得出OB=PA,QB=OA,由點P的坐標(biāo)為(1,3),得出OB=PA=3,QB=OA=4,即可得出點Q的坐標(biāo).【詳解】解:(1)過作軸于,∵,∴,∴點經(jīng)過的弧長為;(2)把點繞坐標(biāo)原點逆時針旋轉(zhuǎn)后得到點,分別過點、做軸的垂線,∴,,∴,,,∴,,則點的坐標(biāo)是.本題考查了坐標(biāo)與圖形性質(zhì)、全等三角形的判定與性質(zhì)和弧長公式;熟練掌握坐標(biāo)與圖形性質(zhì),證明三角形全等是解決問題的關(guān)鍵.21、(1)圖見解析;(2)圖見解析;路徑長π.【分析】(1)利用點平移的坐標(biāo)特征寫出A1、B1、C1的坐標(biāo),然后描點即可得到△A1B1C1為所作;(2)利用網(wǎng)格特定和旋轉(zhuǎn)的性質(zhì)畫出A、B、C的對應(yīng)點A2、B2、C2,從而得到△A2B2C2,然后計算出OB的長后利用弧長公式計算點B旋轉(zhuǎn)到點B2所經(jīng)過的路徑長.【詳解】解:(1)如圖,△A1B1C1為所作;(2)如圖,△A2B2C2為所作,OB==2點B旋轉(zhuǎn)到點B2所經(jīng)過的路徑長==π.本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應(yīng)角都相等都等于旋轉(zhuǎn)角,對應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應(yīng)點,順次連接得出旋轉(zhuǎn)后的圖形.22、4cm【解析】試題分析:想求得FC,EF長,那么就需求出BF的長,利用直角三角形ABF,使用勾股定理即可求得BF長.試題解析:折疊長方形一邊AD,點D落在BC邊的點F處,所以AF=AD=BC=10厘米(2分)在Rt△ABF中,AB=8厘米,AF=10厘米,由勾股定理,得AB2+BF2=AF2∴82+BF2=102∴BF=6(厘米)∴FC=10-6=4(厘米).答:FC長為4厘米.考點:1.翻折變換(折疊問題);2.矩形的性質(zhì).23、(1)BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由詳見解析;(3).【分析】(1)證明△BAD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;(2)證明△BAD≌△CAE,得到BD=CE,根據(jù)勾股定理計算即可;(3)如圖3,作輔助線,構(gòu)建全等三角形,證明△BAF≌△CAG,得到CG=BF=13,證明是直角三角形,根據(jù)勾股定理計算即可.【詳解】解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=90°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴,故答案為BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由是:如圖2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴,∴2AD2=BD2+CD2;(3)如圖3,將AF繞點A逆時針旋轉(zhuǎn)90°至AG,連接CG、FG,則△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=13,Rt△CGF中,∵CF=5,∴FG=12,∵△FAG是等腰直角三角形,∴.本題主要考查了全等三角形的判定與性質(zhì),勾股定理,以及旋轉(zhuǎn)變換的性質(zhì),掌握全等三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論