2026屆廣東省茂名電白區(qū)七校聯(lián)考數(shù)學九年級第一學期期末考試模擬試題含解析_第1頁
2026屆廣東省茂名電白區(qū)七校聯(lián)考數(shù)學九年級第一學期期末考試模擬試題含解析_第2頁
2026屆廣東省茂名電白區(qū)七校聯(lián)考數(shù)學九年級第一學期期末考試模擬試題含解析_第3頁
2026屆廣東省茂名電白區(qū)七校聯(lián)考數(shù)學九年級第一學期期末考試模擬試題含解析_第4頁
2026屆廣東省茂名電白區(qū)七校聯(lián)考數(shù)學九年級第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆廣東省茂名電白區(qū)七校聯(lián)考數(shù)學九年級第一學期期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖1,S是矩形ABCD的AD邊上一點,點E以每秒kcm的速度沿折線BS-SD-DC勻速運動,同時點F從點C出發(fā)點,以每秒1cm的速度沿邊CB勻速運動.已知點F運動到點B時,點E也恰好運動到點C,此時動點E,F(xiàn)同時停止運動.設點E,F(xiàn)出發(fā)t秒時,△EBF的面積為.已知y與t的函數(shù)圖像如圖2所示.其中曲線OM,NP為兩段拋物線,MN為線段.則下列說法:①點E運動到點S時,用了2.5秒,運動到點D時共用了4秒;②矩形ABCD的兩鄰邊長為BC=6cm,CD=4cm;③sin∠ABS=;④點E的運動速度為每秒2cm.其中正確的是()A.①②③ B.①③④ C.①②④ D.②③④2.如果兩個相似三角形的相似比為2:3,那么這兩個三角形的面積比為()A.2:3 B.: C.4:9 D.9:43.如圖,點A,B,C,D四個點均在⊙O上,∠A=70°,則∠C為()A.35° B.70° C.110° D.120°4.下列圖形中,是中心對稱的圖形的是()A.直角三角形 B.等邊三角形 C.平行四邊形 D.正五邊形5.寬與長的比是(約0.618)的矩形叫做黃金矩形,黃金矩形蘊藏著豐富的美學價值,給我們以協(xié)調和勻稱的美感.我們可以用這樣的方法畫出黃金矩形:作正方形ABCD,分別取AD、BC的中點E、F,連接EF:以點F為圓心,以FD為半徑畫弧,交BC的延長線于點G;作GH⊥AD,交AD的延長線于點H,則圖中下列矩形是黃金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH6.方程x2=4的解是()A.x=2B.x=﹣2C.x1=1,x2=4D.x1=2,x2=﹣27.下列說法正確的是()A.一顆質地均勻的骰子已連續(xù)拋擲了2000次,其中拋擲出5點的次數(shù)最少,則第2001次一定拋擲出5點B.拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的時間降雨D.某種彩票中獎的概率是1%,因此買100張該種彩票一定會中獎8.下列條件中,能判斷四邊形是菱形的是()A.對角線互相垂直且相等的四邊形B.對角線互相垂直的四邊形C.對角線相等的平行四邊形D.對角線互相平分且垂直的四邊形9.定義新運算:,例如:,,則y=2⊕x(x≠0)的圖象是()A. B. C. D.10.下列一元二次方程中,有兩個不相等的實數(shù)根的是()A. B. C. D.11.如圖,△ABC中,DE∥BC,BE與CD交于點O,AO與DE,BC交于點N、M,則下列式子中錯誤的是()A. B. C. D.12.如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD=()A.116° B.32° C.58° D.64°二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系中,點的坐標分別是,,若二次函數(shù)的圖象過兩點,且該函數(shù)圖象的頂點為,其中,是整數(shù),且,,則的值為__________.14.如圖,用長的鋁合金條制成使窗戶的透光面積最大的矩形窗框,那么這個窗戶的最大透光面積是___________.(中間橫框所占的面積忽略不計)15.關于x的一元二次方程沒有實數(shù)根,則實數(shù)a的取值范圍是.16.兩個相似三角形的面積比為,其中較大的三角形的周長為,則較小的三角形的周長為__________.17.寫出一個對稱軸是直線,且經過原點的拋物線的表達式______.18.如圖,在Rt△ABC中,∠ACB=90°,∠A=α,將△ABC繞點C按順時針方向旋轉后得到△EDC,此時點D在AB邊上,則旋轉角的大小為.三、解答題(共78分)19.(8分)如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.(1)求證:PD是⊙O的切線;(2)求證:△PBD∽△DCA.20.(8分)如圖,已知四邊形ABCD是平行四邊形.(1)尺規(guī)作圖:按下列要求完成作圖;(保留作圖痕跡,請標注字母)①連AC;②作AC的垂直平分線交BC、AD于E、F;③連接AE、CF;(2)判斷四邊形AECF的形狀,并說明理由.21.(8分)如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于、兩點.(1)求一次函數(shù)與反比例函數(shù)的表達式;(2)求的面積;22.(10分)超速行駛被稱為“馬路第一殺手”為了讓駕駛員自覺遵守交通規(guī)則,湖潯大道公路檢測中心在一事故多發(fā)地段安裝了一個測速儀器,如圖所示,已知檢測點設在距離公路10米的A處,測得一輛汽車從B處行駛到C處所用時間為1.35秒.已知∠B=45°,∠C=30°.(1)求B,C之間的距離(結果保留根號);(2)如果此地限速為70km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù);≈1.7,≈1.4)23.(10分)如圖,在正方形ABCD中,點M、N分別在AB、BC上,AB=4,AM=1,BN=.(1)求證:ΔADM∽ΔBMN;(2)求∠DMN的度數(shù).24.(10分)計算:2sin30°﹣(π﹣)0+|﹣1|+()﹣125.(12分)今年深圳“讀書月”期間,某書店將每本成本為30元的一批圖書,以40元的單價出售時,每天的銷售量是300本.已知在每本漲價幅度不超過10元的情況下,若每本漲價1元,則每天就會少售出10本,設每本書上漲了x元.請解答以下問題:(1)填空:每天可售出書本(用含x的代數(shù)式表示);(2)若書店想通過售出這批圖書每天獲得3750元的利潤,應漲價多少元?26.如圖⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.點M由點B出發(fā)沿BA方向向點A勻速運動,同時點N由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接MN,設運動時間為t(s)﹙0<t<4﹚,解答下列問題:⑴設△AMN的面積為S,求S與t之間的函數(shù)關系式,并求出S的最大值;⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當四邊形MNPC為菱形時,求t的值;⑶當t的值為,△AMN是等腰三角形.

參考答案一、選擇題(每題4分,共48分)1、C【分析】①根據(jù)函數(shù)圖像的拐點是運動規(guī)律的變化點由圖象即可判斷.②設,,由函數(shù)圖像利用△EBF面積列出方程組即可解決問題.③由,,得,設,,在中,由列出方程求出,即可判斷.④求出即可解決問題.【詳解】解:函數(shù)圖像的拐點時點運動的變化點根據(jù)由圖象可知點運動到點時用了2.5秒,運動到點時共用了4秒.故①正確.設,,由題意,解得,所以,,故②正確,,,,設,,在中,,,解得或(舍,,,,故③錯誤,,,,故④正確,故選:C.本題考查二次函數(shù)綜合題、銳角三角函數(shù)、勾股定理、三角形面積、函數(shù)圖象問題等知識,讀懂圖象信息是解決問題的關鍵,學會設未知數(shù)列方程組解決問題,把問題轉化為方程去思考,是數(shù)形結合的好題目,屬于中考選擇題中的壓軸題.2、C【分析】根據(jù)相似三角形的面積的比等于相似比的平方解答.【詳解】∵兩個相似三角形的相似比為2:3,∴這兩個三角形的面積比為4:9,故選:C.本題考查的是相似三角形的性質,掌握相似三角形的面積的比等于相似比的平方是解題的關鍵.3、C【分析】根據(jù)圓內接四邊形的性質即可求出∠C.【詳解】∵四邊形ABCD是圓內接四邊形,∴∠C=180°﹣∠A=110°,故選:C.此題考查的是圓的內接四邊形,掌握圓內接四邊形的性質:對角互補,是解決此題的關鍵.4、C【分析】根據(jù)中心對稱的定義,結合所給圖形即可作出判斷.【詳解】解:A.直角三角形不是中心對稱圖象,故本選項錯誤;B.等邊三角形不是中心對稱圖象,故本選項錯誤;C.平行四邊形是中心對稱圖象,故本選項正確;D.正五邊形不是中心對稱圖象,故本選項錯誤.故選:C.本題考查了中心對稱圖形的特點,屬于基礎題,判斷中心對稱圖形的關鍵是旋轉180°后能夠重合.5、D【分析】先根據(jù)正方形的性質以及勾股定理,求得DF的長,再根據(jù)DF=GF求得CG的長,最后根據(jù)CG與CD的比值為黃金比,判斷矩形DCGH為黃金矩形.【詳解】解:設正方形的邊長為2,則CD=2,CF=1

在直角三角形DCF中,∴矩形DCGH為黃金矩形

故選:D.本題主要考查了黃金分割,解決問題的關鍵是掌握黃金矩形的概念.解題時注意,寬與長的比是的矩形叫做黃金矩形,圖中的矩形ABGH也為黃金矩形.6、D【解析】x2=4,x=±2.故選D.點睛:本題利用方程左右兩邊直接開平方求解.7、B【分析】根據(jù)概率的求解方法逐一進行求解即可得.【詳解】A.無論一顆質地均勻的骰子多少次,每次拋擲出5點的概率都是,故A錯誤;B.拋擲一枚圖釘,因為圖釘質地不均勻,釘尖觸地和釘尖朝上的概率不相等,故B正確;C.明天降雨的概率是80%,表示明天有80%的可能性降雨,故C錯誤D.某種彩票中獎的概率是1%,表明中獎的概率為1%,故D錯誤故答案為:B.本題考查了對概率定義的理解,熟練掌握是解題的關鍵.8、D【解析】利用菱形的判定方法對各個選項一一進行判斷即可.【詳解】解:A、對角線互相垂直相等的四邊形不一定是菱形,此選項錯誤;B、對角線互相垂直的四邊形不一定是菱形,此選項錯誤;C、對角線相等的平行四邊形也可能是矩形,此選項錯誤;D、對角線互相平分且垂直的四邊形是菱形,此選項正確;故選:D.本題考查了菱形的判定,平行四邊形的性質,熟練運用這些性質是本題的關鍵.9、D【分析】根據(jù)題目中的新定義,可以寫出y=2⊕x函數(shù)解析式,從而可以得到相應的函數(shù)圖象,本題得以解決.【詳解】解:由新定義得:,根據(jù)反比例函數(shù)的圖像可知,圖像為D.故選D.本題考查函數(shù)的圖象,解答本題的關鍵是明確題意,利用新定義寫出正確的函數(shù)解析式,再根據(jù)函數(shù)的解析式確定答案,本題列出來的是反比例函數(shù),所以掌握反比例函數(shù)的圖像是關鍵.10、B【分析】先將各選項一元二次方程化為一般式,再計算判別式即得.【詳解】A選項中,則,,,則,有兩個相等的實數(shù)根,不符合題意;B選項可化為,則,,,則,有兩個不相等的實數(shù)根,符合題意;C選項可化為,則,,,則,無實數(shù)根,不符合題意;D選項可化為,則,,,則,無實數(shù)根,不符合題意.故選:B.本題考查了一元二次方程根的判別式,解題關鍵是熟知:判別式時,一元二次方程有兩個不相等的實數(shù)根;判別式時,一元二次方程有兩個相等的實數(shù)根;判別式時,一元二次方程無實數(shù)根.11、D【解析】試題分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴,,,所以A、B、C正確;∵DE∥BC,∴△AEN∽△ACM,∴,∴,所以D錯誤.故選D.點睛:本題考查了相似三角形的判定與性質.注意平行于三角形的一邊的直線與其他兩邊相交,所構成的三角形與原三角形相似;相似三角形對應邊成比例.注意數(shù)形結合思想的應用.12、B【分析】根據(jù)圓周角定理求得:∠AOD=2∠ABD=116°(同弧所對的圓周角是所對的圓心角的一半)、∠BOD=2∠BCD(同弧所對的圓周角是所對的圓心角的一半);根據(jù)平角是180°知∠BOD=180°﹣∠AOD,∴∠BCD=32°.【詳解】解:連接OD.∵AB是⊙0的直徑,CD是⊙O的弦,∠ABD=58°,∴∠AOD=2∠ABD=116°(同弧所對的圓周角是所對的圓心角的一半);又∵∠BOD=180°﹣∠AOD,∠BOD=2∠BCD(同弧所對的圓周角是所對的圓心角的一半);∴∠BCD=32°;故答案為B.本題主要考查了圓周角定理,理解同弧所對的圓周角是所對的圓心角的一半是解答本題的關鍵.二、填空題(每題4分,共24分)13、,【分析】先將A,B兩點的坐標代入,消去c可得出b=1-7a,c=10a,得出xM=-=,yM=.方法一:分以下兩種情況:①a>0,畫出示意圖,可得出yM=0,1或2,進而求出a的值;②a<0時,根據(jù)示意圖可得,yM=5,6或7,進而求出a的值;方法二:根據(jù)題意可知或7①,或7②,由①求出a的值,代入②中驗證取舍從而可得出a的值.【詳解】解:將A,B兩點的坐標代入得,,②-①得,3=21a+3b,∴b=1-7a,c=10a.∴原解析式可以化為:y=ax2+(1-7a)x+10a.∴xM=-=,yM=,方法一:①當a>0時,開口向上,∵二次函數(shù)經過A,B兩點,且頂點中,x,y均為整數(shù),且,,畫出示意圖如圖①,可得0≤yM≤2,∴yM=0,1或2,當yM=0時,解得a=,不滿足xM為整數(shù)的條件,舍去;當yM=1時,解得a=1(a=不符合條件,舍去);當yM=2時,解得a=,符合條件.②a<0時,開口向下,畫出示意圖如圖②,根據(jù)題中條件可得,5≤yM≤7,只有當yM=5,a=-時,當yM=6,a=-1時符合條件.綜上所述,a的值為,.方法二:根據(jù)題意可得或7;或7③,∴當時,解得a=,不符合③,舍去;當時,解得a=,不符合③,舍去;當時,解得a=,符合③中條件;當時,解得a=1,符合③中條件;當時,解得a=-1,符合③中條件;當時,解得a=-,符合③中條件;當時,解得a=-,不符合③舍去;當時,解得a=-,不符合③舍去;綜上可知a的值為:,.故答案為:,本題主要考查二次函數(shù)的解析式、頂點坐標以及函數(shù)圖像的整數(shù)點問題,掌握基本概念與性質是解題的關鍵.14、【分析】設窗的高度為xm,寬為m,根據(jù)矩形面積公式列出二次函數(shù)求函數(shù)值的最大值即可.【詳解】解:設窗的高度為xm,寬為.所以,即,當x=2m時,S最大值為.故答案為:.本題考查二次函數(shù)的應用.能熟練將二次函數(shù)化為頂點式,并據(jù)此求出函數(shù)的最值是解決此題的關鍵.15、a>1.【解析】試題分析:∵方程沒有實數(shù)根,∴△=﹣4a<1,解得:a>1,故答案為a>1.考點:根的判別式.16、1【分析】根據(jù)面積之比得出相似比,然后利用周長之比等于相似比即可得出答案.【詳解】∵兩個相似三角形的面積比為∴兩個相似三角形的相似比為∴兩個相似三角形的周長也比為∵較大的三角形的周長為∴較小的三角形的周長為故答案為:1.本題主要考查相似三角形的性質,掌握相似三角形的性質是解題的關鍵.17、答案不唯一(如)【分析】拋物線的對稱軸即為頂點橫坐標的值,根據(jù)頂點式寫出對稱軸是直線的拋物線表達式,再化為一般式,再由經過原點即為常數(shù)項c為0,即可得到答案.【詳解】解:∵對稱軸是直線的拋物線可為:又∵拋物線經過原點,即C=0,∴對稱軸是直線,且經過原點的拋物線的表達式可以為:,故本題答案為:(答案不唯一).本題考查了拋物線的對稱軸與拋物線解析式的關系.關鍵是明確對稱軸的值與頂點橫坐標相同.18、2α【解析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋轉的性質可得:CB=CD,根據(jù)等邊對等角的性質可得∠CDB=∠B=90°﹣α,然后由三角形內角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋轉的性質可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋轉角的大小為2α.三、解答題(共78分)19、(1)見解析;(2)見解析【解析】(1)由直徑所對的圓周角為直角得到∠BAC為直角,再由AD為角平分線,得到一對角相等,根據(jù)同弧所對的圓心角等于圓周角的2倍及等量代換確定出∠DOC為直角,與平行線中的一條垂直,與另一條也垂直得到OD與PD垂直,即可得證;

(2)由PD與BC平行,得到一對同位角相等,再由同弧所對的圓周角相等及等量代換得到∠P=∠ACD,根據(jù)同角的補角相等得到一對角相等,利用兩對角相等的三角形相似即可得證;【詳解】證明:(1)∵圓心O在BC上,∴BC是圓O的直徑,∴∠BAC=90°,連接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD為圓O的半徑,∴PD是圓O的切線;(2)∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA.本題考查了相似三角形的判定與性質,切線的判定與性質,熟練掌握判定性質是解題關鍵20、(1)作圖見解析;(2)四邊形AECF為菱形,理由見解析.【解析】(1)按要求連接AC,分別以A,C為圓心,以大于AC長為半徑畫弧,弧在AC兩側的交點分別為P,Q,作直線PQ,PQ分別與BC,AC,AD交于點E,O,F(xiàn),連接AE、CF即可;(2)根據(jù)所作的是線段的垂直平分線結合平行四邊形的性質,證明△OAF≌△OCE,繼而得到OE=OF,從而得AC與EF互相垂直平分,根據(jù)對角線互相垂直平分的四邊形是菱形即可得.【詳解】(1)如圖,AE、CF為所作;(2)四邊形AECF為菱形,理由如下:∵EF垂直平分AC,∴OA=OC,EF⊥AC,∵四邊形ABCD為平行四邊形,∴AF∥CE,∴∠OAF=∠OCE,∠OFA=∠OEC,∴△OAF≌△OCE,∴OE=OF,∴AC與EF互相平分,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴平行四邊形AECF為菱形.【點睛】本題考查了平行四邊形的性質,全等三角形的判定與性質,段垂直平分線的性質,菱形的判定等,掌握尺規(guī)作圖的方法,作圖中的條件就是第二問中的已知條件,正確進行尺規(guī)作圖是解題的關鍵.21、(1)y=;(2)12【分析】(1)將點A分別代入一次函數(shù)與反比例函數(shù),即可求出相應的解析式;(2)如圖,將△AOB的面積轉化為△AOC的面積和△BOC的面積和即可求出.【詳解】(1)解:y=x-b過A(-5,-1)-1=-5-b;b=-4y=x-+4y=過A(-5,-1),k=-5×(-1)=5y=(2)如下圖,直線與y軸交于點C,連接AO,BO∵直線解析式為:y=x+4∴C(0,4),CO=4由圖形可知,∴.本題考查一次函數(shù)與反比例函數(shù)的綜合,求△AOB面積的關鍵是將△AOB的面積轉化為△AOC和△BOC的面積和來求解.22、(1)BC=(10+10)m;(2)這輛汽車超速.理由見解析.【分析】(1)作AD⊥BC于D,則AD=10m,求出CD、BD即可解決問題;(2)求出汽車的速度,即可解決問題,注意統(tǒng)一單位.【詳解】(1)如圖作AD⊥BC于D,則AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°=,∴CD=AD=10m,∴BC=BD+DC=(10+10)m;(2)結論:這輛汽車超速.理由:∵BC=10+10≈27m,∴汽車速度==20m/s=72km/h,∵72km/h>70km/h,∴這輛汽車超速.本題考查解直角三角形的應用,銳角三角函數(shù)、速度、時間、路程之間的關系等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.23、(1)見解析;(2)90°【分析】(1)根據(jù),,即可推出,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,從而得出∠DMN的度數(shù).【詳解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵,∴又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°本題考查了正方形的性質的運用,相似三角形的判定及性質的運用,解答時證明△ADM∽△BMN是解答的關鍵.24、1+【解析】分析:直接利用特殊角的三角函數(shù)值以及零指數(shù)冪的性質和負指數(shù)冪的性質分別化簡得出答案.詳解:原式=2×-1+-1+2=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論