2026屆安徽省合肥市包河區(qū)第48中學九年級數(shù)學第一學期期末檢測試題含解析_第1頁
2026屆安徽省合肥市包河區(qū)第48中學九年級數(shù)學第一學期期末檢測試題含解析_第2頁
2026屆安徽省合肥市包河區(qū)第48中學九年級數(shù)學第一學期期末檢測試題含解析_第3頁
2026屆安徽省合肥市包河區(qū)第48中學九年級數(shù)學第一學期期末檢測試題含解析_第4頁
2026屆安徽省合肥市包河區(qū)第48中學九年級數(shù)學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆安徽省合肥市包河區(qū)第48中學九年級數(shù)學第一學期期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.方程x2+5x=0的適當解法是()A.直接開平方法 B.配方法C.因式分解法 D.公式法2.拋物線y=(x﹣1)2﹣2的頂點是()A.(1,﹣2) B.(﹣1,2) C.(1,2) D.(﹣1,﹣2)3.已知等腰三角形的腰和底的長分別是一元二次方程x2﹣4x+3=0的根,則該三角形的周長可以是()A.5 B.7 C.5或7 D.104.已知,則下列各式中不正確的是()A. B. C. D.5.的倒數(shù)是()A. B. C. D.6.關于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.m<3 B.m>3 C.m≤3 D.m≥37.若是一元二次方程,則的值是()A.-1 B.0 C.1 D.±18.如圖,正方形ABCD的邊長是4,∠DAC的平分線交DC于點E,若點P、Q分別是AD和AE上的動點,則DQ+PQ的最小值()A.2B.4C.2D.49.在下列幾何體中,主視圖、左視圖和俯視圖形狀都相同的是()A. B. C. D.10.如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:;;;,其中正確的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,PA,PB分別切⊙O于點A,B.若∠P=100°,則∠ACB的大小為_____(度).12.如圖,港口A在觀測站O的正東方向,OA=4.某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為____.

13.如圖,AB為⊙O的直徑,點P為AB延長線上的一點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE的垂線AC、BD,垂足分別為C、D,連接AM,則下列結論正確的是___________.(寫出所有正確結論的序號)①AM平分∠CAB;②AM2=AC?AB;③若AB=4,∠APE=30°,則的長為;④若AC=3,BD=1,則有CM=DM=.14.《算學寶鑒》中記載了我國數(shù)學家楊輝提出的一個問題:“直田積八百六十四步,之云闊不及長十二步,問長闊共幾何?”譯文:一個矩形田地的面積等于864平方步,且它的寬比長少12步,問長與寬的和是多少步?如果設矩形田地的長為x步,可列方程為_________.15.一元二次方程x2﹣4=0的解是._________16.一組數(shù)據,,,,的眾數(shù)是,則=_________.17.一輛汽車在行駛過程中,路程(千米)與時間(小時)之間的函數(shù)關系如圖所示.當時,關于的函數(shù)解析式為,那么當時,關于的函數(shù)解析式為________.18.已知二次函數(shù)(a是常數(shù),a≠0),當自變量x分別取-6、-4時,對應的函數(shù)值分別為y1、y2,那么y1、y2的大小關系是:y1__y2(填“>”、“<”或“=”).三、解答題(共66分)19.(10分)如圖,在△ABC中,∠C=90°,AB的垂直平分線分別交邊AB、BC于點D、E,連結AE.(1)如果∠B=25°,求∠CAE的度數(shù);(2)如果CE=2,,求的值.20.(6分)已知二次函數(shù)的頂點坐標為,且其圖象經過點,求此二次函數(shù)的解析式.21.(6分)如圖,已知正方形的邊長為,點是對角線上一點,連接,將線段繞點順時針旋轉至的位置,連接、.(1)求證:;(2)當點在什么位置時,的面積最大?并說明理由.22.(8分)如圖:反比例函數(shù)的圖象與一次函數(shù)的圖象交于、兩點,其中點坐標為.(1)求反比例函數(shù)與一次函數(shù)的表達式;(2)觀察圖象,直接寫出當時,自變量的取值范圍;(3)一次函數(shù)的圖象與軸交于點,點是反比例函數(shù)圖象上的一個動點,若,求此時點的坐標.23.(8分)為落實立德樹人的根本任務,加強思改、歷史學科教師的專業(yè)化隊伍建設.某校計劃從前來應聘的思政專業(yè)(一名研究生,一名本科生)、歷史專業(yè)(一名研究生、一名本科生)的高校畢業(yè)生中選聘教師,在政治思想審核合格的條件下,假設每位畢業(yè)生被錄用的機會相等(1)若從中只錄用一人,恰好選到思政專業(yè)畢業(yè)生的概率是:(2)若從中錄用兩人,請用列表或畫樹狀圖的方法,求恰好選到的是一名思政研究生和一名歷史本科生的概率.24.(8分)(1)如圖1,在△ABC中,AB>AC,點D,E分別在邊AB,AC上,且DE∥BC,若AD=2,AE=,則的值是;(2)如圖2,在(1)的條件下,將△ADE繞點A逆時針方向旋轉一定的角度,連接CE和BD,的值變化嗎?若變化,請說明理由;若不變化,請求出不變的值;(3)如圖3,在四邊形ABCD中,AC⊥BC于點C,∠BAC=∠ADC=θ,且tanθ=,當CD=6,AD=3時,請直接寫出線段BD的長度.25.(10分)“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自年起逐月增加,據統(tǒng)計該商城月份銷售自行車輛,月份銷售了輛.(1)求這個運動商城這兩個月的月平均增長率是多少?(2)若該商城前個月的自行車銷量的月平均增長率相同,問該商城月份賣出多少輛自行車?26.(10分)某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.(1)求一次函數(shù)的表達式;(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?(3)若該商場獲得利潤不低于500元,試確定銷售單價的范圍.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】因為方程中可以提取公因式x,所以該方程適合用因式分解法.因式分解為x(x+5)=0,解得x=0或x=-5.用因式分解法解該方程會比較簡單快速.【詳解】解:∵x2+5x=0,∴x(x+5)=0,則x=0或x+5=0,解得:x=0或x=﹣5,故選:C.本題的考點是解一元二次方程.方法是熟記一元二次方程的幾種解法,也可用選項的四種方法分別解題,選擇最便捷的方法.2、A【分析】根據頂點式的坐標特點直接寫出頂點坐標即可解決.【詳解】解:∵y=(x﹣1)2﹣2是拋物線解析式的頂點式,根據頂點式的坐標特點可知,頂點坐標為(1,﹣2).故選:A.本題考查了頂點式,解決本題的關鍵是正確理解二次函數(shù)頂點式中頂點坐標的表示方法.3、B【解析】先通過解方程求出等腰三角形兩邊的長,然后利用三角形三邊關系確定等腰三角形的腰和底的長,進而求出三角形的周長.本題解析:x2-4x+3=0(x?3)(x?1)=0,x?3=0或x?1=0,所以x?=3,x?=1,當三角形的腰為3,底為1時,三角形的周長為3+3+1=7,當三角形的腰為1,底為3時不符合三角形三邊的關系,舍去,所以三角形的周長為7.故答案為7.考點:解一元二次方程-因式分解法,三角形三邊關系,等腰三角形的性質4、C【分析】依據比例的基本性質,將比例式化為等積式,即可得出結論.【詳解】A.由可得,變形正確,不合題意;B.由可得,變形正確,不合題意;C.由可得,變形不正確,符合題意;D.由可得,變形正確,不合題意.故選C.本題考查了比例的性質,此題比較簡單,解題的關鍵是掌握比例的變形.5、A【分析】根據乘積為1的兩個數(shù)互為倒數(shù)進行解答即可.【詳解】解:∵×1=1,∴的倒數(shù)是1.故選A.本題考查了倒數(shù)的概念,熟記倒數(shù)的概念是解答此題的關鍵.6、A【解析】分析:根據關于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根可得△=(-2)2-4m>0,求出m的取值范圍即可.詳解:∵關于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根,∴△=(-2)2-4m>0,∴m<3,故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程沒有實數(shù)根.7、C【分析】根據一元二次方程的概念即可列出等式,求出m的值.【詳解】解:若是一元二次方程,則,解得,又∵,∴,故,故答案為C.本題考查了一元二次方程的定義,熟知一元二次方程的定義并列出等式是解題的關鍵.8、C【分析】過D作AE的垂線交AE于F,交AC于D′,再過D′作AP′⊥AD,由角平分線的性質可得出D′是D關于AE的對稱點,進而可知D′P′即為DQ+PQ的最小值.【詳解】作D關于AE的對稱點D′,再過D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D關于AE的對稱點,AD′=AD=4,∴D′P′即為DQ+PQ的最小值,∵四邊形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值為22,故答案為C.本題考查了正方形的性質以及角平分線的性質和全等三角形的判定和性質和軸對稱-最短路線問題,根據題意作出輔助線是解答此題的9、C【分析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依次找到主視圖、左視圖和俯視圖形狀都相同的圖形即可.【詳解】解:A、圓臺的主視圖和左視圖相同,都是梯形,俯視圖是圓環(huán),故選項不符合題意;B、三棱柱的主視圖和左視圖、俯視圖都不相同,故選項不符合題意;C、球的三視圖都是大小相同的圓,故選項符合題意.D、圓錐的三視圖分別為等腰三角形,等腰三角形,含圓心的圓,故選項不符合題意;故選C.本題考查了三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.10、C【解析】試題解析:①和的底分別相等,高也相等,所以它們的面積也相等,故正確.②和的底分別相等,高也相等,所以它們的面積也相等,并不是倍的關系.故錯誤.③由于是的中點,所以和的相似比為,所以它們的面積之比為.故錯誤.④和的底相等,高和則是的關系,所以它們的面積之比為.故正確.綜上所述,符合題意的有①和④.故選C.二、填空題(每小題3分,共24分)11、1【分析】首先連接OA,OB,由PA、PB分別切⊙O于點A、B,根據切線的性質可得:OA⊥PA,OB⊥PB,然后由四邊形的內角和等于360°,求得∠AOB的度數(shù),又由圓周角定理,即可求得答案.【詳解】解:連接OA,OB,∵PA、PB分別切⊙O于點A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣100°﹣90°=80°,∴.故答案為:1.此題考查了切線的性質以及圓周角定理.解題的關鍵是掌握輔助線的作法,熟練掌握切線的性質.12、1【解析】過點A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,則AB=AD=1.【詳解】如圖,過點A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即該船航行的距離(即AB的長)為1.故答案為1.本題考查了解直角三角形的應用-方向角問題,難度適中,作出輔助線構造直角三角形是解題的關鍵.13、①②④【解析】連接OM,由切線的性質可得OM⊥PC,繼而得OM∥AC,再根據平行線的性質以及等邊對等角即可求得∠CAM=∠OAM,由此可判斷①;通過證明△ACM∽△AMB,根據相似三角形的對應邊成比例可判斷②;求出∠MOP=60°,利用弧長公式求得的長可判斷③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,繼而可得PB=OB=AO,PD=DM=CM,進而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的長,可得CM=DM=DP=,由此可判斷④.【詳解】連接OM,∵PE為⊙O的切線,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正確;∵AB為⊙O的直徑,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC?AB,故②正確;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的長為,故③錯誤;∵BD⊥PC,AC⊥PC,OM⊥PC,∴BD∥AC//OM,∴△PBD∽△PAC,∴,∴PB=PA,又∵AO=BO,AO+BO=AB,AB+PB=PA,∴PB=OB=AO,又∵BD∥AC//OM,∴PD=DM=CM,∴OM=2BD=2,在Rt△PBD中,PB=BO=OM=2∴PD==,∴CM=DM=DP=,故④正確,故答案為①②④.本題考查了切線的性質,平行線分線段成比例定理,相似三角形的判定與性質,勾股定理等,綜合性較強,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.14、x(x-12)=864【解析】設矩形田地的長為x步,那么寬就應該是(x?12)步.根據矩形面積=長×寬,得:x(x?12)=864.故答案為x(x?12)=864.15、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.16、【解析】根據眾數(shù)的概念求解可得.【詳解】∵數(shù)據4,3,x,1,1的眾數(shù)是1,∴x=1,故答案為1.本題主要考查眾數(shù),求一組數(shù)據的眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據,若幾個數(shù)據頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據.17、【分析】將x=1代入得出此時y的值,然后設當1≤x≤2時,y關于x的函數(shù)解析式為y=kx+b,再利用待定系數(shù)法求一次函數(shù)解析式即可.【詳解】解:∵當時0≤x≤1,y關于x的函數(shù)解析式為y=1x,

∴當x=1時,y=1.

又∵當x=2時,y=11,

設當1<x≤2時,y關于x的函數(shù)解析式為y=kx+b,將(1,1),(2,11)分別代入解析式得,,解得,所以,當時,y關于x的函數(shù)解析式為y=100x-2.故答案為:y=100x-2.本題考查了一次函數(shù)的應用,主要利用了一次函數(shù)圖象上點的坐標特征,待定系數(shù)法求一次函數(shù)解析式,比較簡單.18、>【分析】先求出拋物線的對稱軸為,由,則當,y隨x的增大而減小,即可判斷兩個函數(shù)值的大小.【詳解】解:∵二次函數(shù)(a是常數(shù),a≠0),∴拋物線的對稱軸為:,∵,∴當,y隨x的增大而減小,∵,∴;故答案為:.本題考查了二次函數(shù)的性質,解題的關鍵是熟練掌握二次函數(shù)的性質進行解題.三、解答題(共66分)19、(1)∠CAE=40°;(2)【分析】(1)由題意DE垂直平分AB,∠EAB=∠B,從而求出∠CAE的度數(shù);(2)根據題干可知利用余弦以及勾股定理求出的值.【詳解】解:(1)∵DE垂直平分AB,∴EA=EB,∴∠EAB=∠B=22°.∴∠CAE=40°.(2)∵∠C=90°,∴.∵CE=2,∴AE=1.∴AC=.∵EA=EB=1,∴BC=2.∴,∴.本題主要應用三角函數(shù)定義來解直角三角形,關鍵要運用銳角三角函數(shù)的概念及比正弦和余弦的基本關系進行解題.20、【分析】根據已知頂點坐標,利用待定系數(shù)法可設二次函數(shù)的解析式為,代入坐標求解即可求得二次函數(shù)的解析式.【詳解】解:因為二次函數(shù)的頂點坐標為,所以可設二次函數(shù)的解析式為:因為圖象經過點(1,1),所以,解得,所以,所求二次函數(shù)的解析式為:.本題考查了用待定系數(shù)法求二次函數(shù)的解析式,一般設解析式為;當已知二次函數(shù)的頂點坐標時,可設解析式為;當已知二次函數(shù)圖象與x軸的兩個交點坐標時,可設解析式為.21、(1)見解析;(2)在中點時,的面積最大,見解析【分析】(1)由題意推出,結合正方形的性質利用SAS證明;(2)設AE=x,表示出AF,根據∠EAF=90°,得出關于面積的二次函數(shù),利用二次函數(shù)的最值求解.【詳解】解:(1)∵繞點順時針旋轉至的位置,∴,,∵在正方形中,∴,,∴,即,∴;(2)由(1)知,∴,,∴,設,∵正方形的邊長為,故,∴,∴,∴當即在中點時,的面積最大.本題考查了全等三角形的判定、旋轉的性質和二次函數(shù)的性質,準確利用題中的條件進行判定和證明,將待求的量轉化為二次函數(shù)最值.22、(1),;(2)或;(3)(12,)或(-12,)【分析】(1)把A點坐標代入中求出k得到反比例函數(shù)解析式,把A點坐標代入中求出b得到一次函數(shù)解析式;(2)由函數(shù)圖象,寫出一次函數(shù)圖象在反比例函數(shù)圖象上方所對應的自變量的范圍即可;(3)設P(x,),先利用一次解析式解析式確定C(0,1),再根據三角形面積公式得到,然后解絕對值方程得到x的值,從而得到P點坐標.【詳解】解:(1)把A(1,2)代入得k=2,∴反比例函數(shù)解析式為,把A(1,2)代入得,解得,∴一次函數(shù)解析式為;(2)由函數(shù)圖象可得:當y1<y2時,-2<x<0或x>1;(3)設P(x,),當x=0時,,∴C(0,1),∵S△OCP=6,∴,解得,∴P(12,)或(-12,).本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了待定系數(shù)法求函數(shù)解析式.23、(1);(2)恰好選到的是一名思政研究生和一名歷史本科生的概率為.【解析】(1)由概率公式即可得出結果;

(2)設思政專業(yè)的一名研究生為A、一名本科生為B,歷史專業(yè)的一名研究生為C、一名本科生為D,畫樹狀圖可知:共有12個等可能的結果,恰好選到的是一名思政研究生和一名歷史本科生的結果有2個,即可得出結果.【詳解】(1)若從中只錄用一人,恰好選到思政專業(yè)畢業(yè)生的概率是;故答案為:;(2)設思政專業(yè)的一名研究生為A、一名本科生為B,歷史專業(yè)的一名研究生為C、一名本科生為D,畫樹狀圖如圖:共有12個等可能的結果,恰好選到的是一名思政研究生和一名歷史本科生的結果有2個,∴恰好選到的是一名思政研究生和一名歷史本科生的概率為.故答案為:本題考查了列表法與樹狀圖法以及概率公式;根據題意畫出樹狀圖是解題的關鍵.24、(1);(2)的值不變化,值為,理由見解析;(3)【分析】(1)由平行線分線段成比例定理即可得出答案;(2)證明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,則DM=CN,DN=MC,由三角函數(shù)定義得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面積法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【詳解】(1)∵DE∥BC,∴===;故答案為:;(2)的值不變化,值為;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋轉的性質得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如圖3所示:則四邊形DMCN是矩形,∴DM=CN,DN=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論