




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆天津市河東區(qū)名校數(shù)學九上期末達標測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列結論正確的是()A.垂直于弦的弦是直徑 B.圓心角等于圓周角的2倍C.平分弦的直徑垂直該弦 D.圓內接四邊形的對角互補2.某商場將進貨價為45元的某種服裝以65元售出,平均每天可售30件,為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施,調查發(fā)現(xiàn):每件降價1元,則每天可多售5件,如果每天要盈利800元,每件應降價()A.12元 B.10元 C.11元 D.9元3.如圖,線段AB兩個端點坐標分別為A(4,6),B(6,2),以原點O為位似中心,在第三象限內將線段AB縮小為原來的后,得到線段CD,則點C的坐標為()A.(﹣2,﹣3) B.(﹣3,﹣2) C.(﹣3,﹣1) D.(﹣2,﹣1)4.在一個不透明的袋中裝有個紅、黃、藍三種顏色的球,除顏色外其他都相同,佳佳和琪琪通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在左右,則袋中紅球大約有()A.個 B.個 C.個 D.個5.已知二次函數(shù)y=a(x+1)2-b(a≠0)有最小值,則a,b的大小關系為()A.a>b B.a<bC.a=b D.不能確定6.如圖,在平面直角坐標系中,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點,當時,自變量的取值范圍是()A. B.C.或 D.或7.不等式組的解集是()A. B. C. D.8.下列函數(shù)中,函數(shù)值隨自變量x的值增大而增大的是()A. B. C. D.9.如圖,矩形的對角線交于點O,已知則下列結論錯誤的是()A. B.C. D.10.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:6二、填空題(每小題3分,共24分)11.一個密碼箱的密碼,每個數(shù)位上的數(shù)都是從0到9的自然數(shù),若要使一次撥對的概率小于,則密碼的位數(shù)至少要設置___位.12.一張直角三角形紙片,,,,點為邊上的任一點,沿過點的直線折疊,使直角頂點落在斜邊上的點處,當是直角三角形時,則的長為_____.13.圓內接正六邊形一邊所對的圓周角的度數(shù)是__________.14.在紙上剪下一個圓和一個扇形紙片,使它們恰好圍成一個圓錐(如圖所示),如果扇形的圓心角為90°,扇形的半徑為4,那么所圍成的圓錐的高為_____.15.如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長為_____.16.關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是__________.17.如圖,在平面直角坐標系中,直角三角形的直角頂點與原點O重合,頂點A,B恰好分別落在函數(shù),的圖象上,則tan∠ABO的值為___________18.若關于的一元二次方程有實數(shù)根,則的值可以為________(寫出一個即可).三、解答題(共66分)19.(10分)如圖,拋物線與軸交于、兩點,與軸交于點.(1)求點、、的坐標;(2)若點在軸的上方,以、、為頂點的三角形與全等,平移這條拋物線,使平移后的拋物線經(jīng)過點與點,請你寫出平移過程,并說明理由。20.(6分)如圖,AB是⊙O的直徑,點C在圓O上,BE⊥CD垂足為E,CB平分∠ABE,連接BC(1)求證:CD為⊙O的切線;(2)若cos∠CAB=,CE=,求AD的長.21.(6分)如圖,在矩形ABCD中,E是AD上的一點,沿CE將△CDE對折,點D剛好落在AB邊的點F上.(1)求證:△AEF∽△BFC.(2)若AB=20cm,BC=16cm,求tan∠DCE.22.(8分)如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點.(1)求該拋物線的解析式;(2)求該拋物線的對稱軸以及頂點坐標;(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.23.(8分)圖1,圖2分別是一滑雪運動員在滑雪過程中某一時刻的實物圖與示意圖,已知運動員的小腿與斜坡垂直,大腿與斜坡平行,且三點共線,若雪仗長為,,,求此刻運動員頭部到斜坡的高度(精確到)(參考數(shù)據(jù):)24.(8分)平面直角坐標系xOy中,二次函數(shù)y=x2﹣2mx+m2+2m+2的圖象與x軸有兩個交點.(1)當m=﹣2時,求二次函數(shù)的圖象與x軸交點的坐標;(2)過點P(0,m﹣1)作直線1⊥y軸,二次函數(shù)圖象的頂點A在直線l與x軸之間(不包含點A在直線l上),求m的范圍;(3)在(2)的條件下,設二次函數(shù)圖象的對稱軸與直線l相交于點B,求△ABO的面積最大時m的值.25.(10分)如圖,△ABC中,AB=AC,BE⊥AC于E,D是BC中點,連接AD與BE交于點F,求證:△AFE∽△BCE.26.(10分)超市銷售某種兒童玩具,該玩具的進價為100元/件,市場管理部門規(guī)定,該種玩具每件利潤不能超過進價的60%.現(xiàn)在超市的銷售單價為140元,每天可售出50件,根據(jù)市場調查發(fā)現(xiàn),如果銷售單價每上漲2元,每天銷售量會減少1件。設上漲后的銷售單價為x元,每天售出y件.(1)請寫出y與x之間的函數(shù)表達式并寫出x的取值范圍;(2)設超市每天銷售這種玩具可獲利w元,當x為多少元時w最大,最大為名少元?
參考答案一、選擇題(每小題3分,共30分)1、D【分析】分別根據(jù)垂徑定理、圓周角定理及圓內接四邊形的性質對各選項進行逐一分析即可.【詳解】解:A,垂直于弦的弦不一定是直徑,故本選項錯誤;B,在同圓或等圓中,同弧或等弧所對的圓心角等于圓周角的2倍,故本選項錯誤;C,平分弦的直徑垂直該弦(非直徑),故本選項錯誤;D,符合圓內接四邊形的性質故本選項正確.故選:D.本題主要考查了垂徑定理、圓周角定理以及圓內接四邊形的基本性質.2、B【分析】設應降價x元,根據(jù)題意列寫方程并求解可得答案.【詳解】設應降價x元則根據(jù)題意,等量方程為:(65-x-45)(30+5x)=800解得:x=4或x=10∵要盡快較少庫存,∴x=4舍去故選:B.本題考查一元二次方程利潤問題的應用,需要注意最后有2個解,需要按照題干要求舍去其中一個解.3、A【詳解】解:∵線段AB的兩個端點坐標分別為A(4,6),B(6,2),以原點O為位似中心,在第三象限內將線段AB縮小為原來的后得到線段CD,∴端點C的橫坐標和縱坐標都變?yōu)锳點的一半,∴端點C的坐標為:(-2,-3).故選A.4、A【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設出未知數(shù)列出方程求解.【詳解】設袋中有紅球x個,由題意得解得x=10,故選:A.本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.5、D【解析】∵二次函數(shù)y=a(x+1)2-b(a≠0)有最小值,∴a>0,∵無論b為何值,此函數(shù)均有最小值,∴a、b大小無法確定.6、D【解析】顯然當y1>y2時,正比例函數(shù)的圖象在反比例函數(shù)圖象的上方,結合圖形可直接得出結論.【詳解】∵正比例函數(shù)y1=k1x的圖象與反比例函數(shù)的圖象交于A(-1,-2),B(1,2)點,
∴當y1>y2時,自變量x的取值范圍是-1<x<0或x>1.
故選:D.本題考查了反比例函數(shù)與一次函數(shù)的交點問題,數(shù)形結合的思想是解題的關鍵.7、D【分析】根據(jù)不等式的性質解不等式組即可.【詳解】解:化簡可得:因此可得故選D.本題主要考查不等式組的解,這是中考的必考點,應當熟練掌握.8、A【解析】一次函數(shù)當時,函數(shù)值總是隨自變量的增大而增大,反比例函數(shù)當時,在每一個象限內,隨自變量增大而增大.【詳解】、該函數(shù)圖象是直線,位于第一、三象限,隨增大而增大,故本選項正確;、該函數(shù)圖象是直線,位于第二、四象限,隨增大而減小,故本選項錯誤;、該函數(shù)圖象是雙曲線,位于第一、三象限,在每一象限內,隨增大而減小,故本選項錯誤;、該函數(shù)圖象是雙曲線,位于第二、四象限,在每一象限內,隨增大而增大,故本選項錯誤.故選:.本題考查了一次函數(shù)、反比例函數(shù)的增減性;熟練掌握一次函數(shù)、反比例函數(shù)的性質是關鍵.9、C【分析】根據(jù)矩形的性質得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各項即可.【詳解】選項A,∵四邊形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形內角和定理得:∠BAC=∠BDC=∠α,選項A正確;選項B,在Rt△ABC中,tanα=,即BC=m?tanα,選項B正確;選項C,在Rt△ABC中,AC=,即AO=,選項C錯誤;選項D,∵四邊形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,選項D正確.故選C.本題考查了矩形的性質和解直角三角形,能熟記矩形的性質是解此題的關鍵.10、C【解析】根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.本題考查相似三角形的判定和性質、平行四邊形的性質,解題關鍵是通過線段的比得到三角形面積的關系.二、填空題(每小題3分,共24分)11、1.【分析】分別求出取一位數(shù)、兩位數(shù)、三位數(shù)、四位數(shù)時一次就撥對密碼的概率,再根據(jù)所在的范圍解答即可.【詳解】因為取一位數(shù)時一次就撥對密碼的概率為;取兩位數(shù)時一次就撥對密碼的概率為;取三位數(shù)時一次就撥對密碼的概率為;取四位數(shù)時一次就撥對密碼的概率為.故一次就撥對的概率小于,密碼的位數(shù)至少需要1位.故答案為1.本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.12、或【分析】依據(jù)沿過點D的直線折疊,使直角頂點C落在斜邊AB上的點E處,當△BDE是直角三角形時,分兩種情況討論:∠DEB=90°或∠BDE=90°,分別依據(jù)勾股定理或者相似三角形的性質,即可得到CD的長【詳解】分兩種情況:①若,則,,連接,則,,,設,則,中,,解得,;②若,則,,四邊形是正方形,,,,,設,則,,,,解得,,綜上所述,的長為或,故答案為或.此題考查折疊的性質,勾股定理,全等三角形的判定與性質,解題關鍵在于畫出圖形13、30°或150°【分析】求出一條邊所對的圓心角的度數(shù),再根據(jù)圓周角和圓心角的關系解答.【詳解】解:圓內接正六邊形的邊所對的圓心角360°÷6=60°,圓內接正六邊形的一條邊所對的弧可能是劣弧,也可能是優(yōu)弧,
根據(jù)一條弧所對的圓周角等于它所對圓心角的一半,
所以圓內接正六邊形的一條邊所對的圓周角的度數(shù)是30°或150°,故答案為30°或150°.本題考查學生對正多邊形的概念掌握和計算的能力,涉及的知識點有正多邊形的中心角、圓周角與圓心角的關系,屬于基礎題,要注意分兩種情況討論.14、【詳解】設圓錐的底面圓的半徑為r,根據(jù)題意得2πr=,解得r=1,所以所圍成的圓錐的高=考點:圓錐的計算.15、22015π【分析】連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可知為圓的周長,再找出圓半徑的規(guī)律即可解題.【詳解】解:連接P1O1,P2O2,P3O3…,∵P1是⊙O1上的點,∴P1O1=OO1,∵直線l解析式為y=x,∴∠P1OO1=45°,∴△P1OO1為等腰直角三角形,即P1O1⊥x軸,同理,PnOn垂直于x軸,∴為圓的周長,∵以O1為圓心,O1O為半徑畫圓,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交x軸正半軸于點O3,以此類推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案為:22015π.本題考查了圖形類規(guī)律探索、一次函數(shù)的性質、等腰直角三角形的性質以及弧長的計算,本題中準確找到圓半徑的規(guī)律是解題的關鍵.16、【分析】根據(jù)根的判別式即可求出答案;【詳解】解:由題意可知:解得:故答案為:本題考查一元二次方程根的判別式,解題的關鍵是熟練掌握一元二次方程根的判別式并應用.17、【分析】根據(jù)反比例函數(shù)的幾何意義可得直角三角形的面積;根據(jù)題意可得兩個直角三角形相似,而相似比就是直角三角形?AOB的兩條直角邊的比,從而得出答案.【詳解】過點A、B分別作AD⊥x軸,BE⊥x軸,垂足為D、E,∵頂點A,B恰好分別落在函數(shù),的圖象上∴又∵∠AOB=90°∴∠AOD=∠OBE∴∴則tan∠ABO=故本題答案為:.本題考查了反比例函數(shù),相似三角形和三角函數(shù)的綜合題型,連接輔助線是解題的關鍵.18、5(答案不唯一,只有即可)【解析】由于方程有實數(shù)根,則其根的判別式△≥1,由此可以得到關于c的不等式,解不等式就可以求出c的取值范圍.【詳解】解:一元二次方程化為x2+6x+9-c=1,∵△=36-4(9-c)=4c≥1,解上式得c≥1.故答為5(答案不唯一,只有c≥1即可).本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>1時,一元二次方程有兩個不相等的實數(shù)根;當?=1時,一元二次方程有兩個相等的實數(shù)根;當?<1時,一元二次方程沒有實數(shù)根.關鍵在于求出c的取值范圍.三、解答題(共66分)19、(1),,;(2),.理由見解析.【分析】(1)令中y=0,求出點A、B的坐標,令x=0即可求出點C的坐標;(2)分兩種全等情況求出點D的坐標,再設平移后的解析式,將點B、D的坐標代入即可求出解析式,由平移前的解析式根據(jù)頂點式的數(shù)值變化得到平移的方向與距離.【詳解】(1)令中y=0,得,解得:,∴,.當中x=0時,y=-3,∴.(2)當△ABD1≌△ABC時,∵,∴由軸對稱得D1(0,3),設平移后的函數(shù)解析式為,將點B、D1的坐標代入,得,解得,∴平移后的解析式為,∵平移前的解析式為,∴將向右平移3個單位,再向上3個單位得到;當△ABD2≌△BAC時,即△ABD2≌△BAD1,作D2H⊥AB,∴AH=OB=1,D2H=OD1=3,∴OH=OA-AH=3-1=2,∴D2(-2,3),設平移后的解析式為,將點B、D2的坐標代入得,解得,∴平移后的函數(shù)解析式為,∵平移前的解析式為,∴將向右平移1個單位,再向上平移3個單位得到.此題考查二次函數(shù)圖象與坐標軸交點的求法,函數(shù)圖象平移的規(guī)律,求圖象平移規(guī)律時需先求得函數(shù)的解析式,將平移前后的解析式都化為頂點式,根據(jù)頂點式中h、k的變化確定平移的方向與距離.20、(1)見解析;(2)AD=.【分析】(1)連接OC,根據(jù)等邊對等角,以及角平分線的定義,即可證得∠OCB=∠EBC,則OC∥BE,從而證得OC⊥CD,即CD是⊙O的切線;(2)根據(jù)勾股定理和相似三角形的判定和性質即可得到結論.【詳解】證明:(1)連接OC.∵OC=OB,∴∠ABC=∠OCB,又∵∠EBC=∠ABC,∴∠OCB=∠EBC,∴OC∥BE,∵BE⊥CD,∴OC⊥CD,∴CD是⊙O的切線;(2)設AB=x,∵AB是⊙O的直徑,∴∠ACB=90°,∴直角△ABC中,AC=AB?cos∠CAB=,∴BC===x,∵∠BCE+∠BCO=∠CAB+∠ABC=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠CAB=∠BCE,∵∠E=∠ACB=90°,∴△ACB∽△CEB,∴=,∴=,∴x=,∴AB=,BC=5,∵△ACB∽△CEB,∴∠CAB=∠ECB=cos∠CAB=∴BE=2,∵OC∥BE,∴△DOC∽△DBE,∴=,∴=,∴AD=.本題考查了切線的判定,三角函數(shù)以及圓周角定理,相似三角形的判定及性質等,證明切線的問題常用的思路是轉化成證明垂直問題.21、(1)證明見解析;(2)【分析】(1)由矩形的性質及一線三等角得出∠A=∠B,∠AEF=∠BFC,從而可證得結論;(2)矩形的性質及沿CE將△CDE對折,可求得CD、AD及CF的長;在Rt△BCF中,由勾股定理得出BF的長,從而可得AF的長;由△AEF∽△BFC可寫出比例式,從而可求得AE的長,進而得出DE的長;最后由正切函數(shù)的定義可求得答案.【詳解】(1)∵在矩形ABCD中,沿CE將△CDE對折,點D剛好落在AB邊的點F上∴△CDE≌△CFE∴∠EFC=∠D=90°∴∠AFE+∠BFC=90°∵∠A=90°∴∠AEF+∠AFE=90°∴∠AEF=∠BFC又∵∠A=∠B∴△AEF∽△BFC;(2)∵四邊形ABCD為矩形,AB=20cm,BC=16cm∴CD=20cm,AD=16cm∵△CDE≌△CFE∴CF=CD=20cm在Rt△BCF中,由勾股定理得:BF==12cm∴AF=AB﹣BF=8cm∵△AEF∽△BFC∴∴∴AE=6∴DE=AD-AE=16-6=10cm∴在Rt△DCE中,tan∠DCE=.本題考查了全等三角形、矩形、相似三角形、直角三角形兩銳角互余、勾股定理、三角函數(shù)的知識;解題的關鍵是熟練掌握全等三角形、矩形、相似三角形、勾股定理、三角函數(shù)的性質,從而完成求解.22、(1)y=x2﹣2x﹣1;(2)拋物線的對稱軸x=1,頂點坐標(1,﹣4);(1)(,4)或(,4)或(1,﹣4).【分析】(1)由于拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,那么可以得到方程x2+bx+c=0的兩根為x=﹣1或x=1,然后利用根與系數(shù)即可確定b、c的值.(2)根據(jù)S△PAB=2,求得P的縱坐標,把縱坐標代入拋物線的解析式即可求得P點的坐標.【詳解】解:(1)∵拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,∴方程x2+bx+c=0的兩根為x=﹣1或x=1,∴﹣1+1=﹣b,﹣1×1=c,∴b=﹣2,c=﹣1,∴二次函數(shù)解析式是y=x2﹣2x﹣1.(2)∵y=﹣x2﹣2x﹣1=(x﹣1)2﹣4,∴拋物線的對稱軸x=1,頂點坐標(1,﹣4).(1)設P的縱坐標為|yP|,∵S△PAB=2,∴AB?|yP|=2,∵AB=1+1=4,∴|yP|=4,∴yP=±4,把yP=4代入解析式得,4=x2﹣2x﹣1,解得,x=1±2,把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣1,解得,x=1,∴點P在該拋物線上滑動到(1+2,4)或(1﹣2,4)或(1,﹣4)時,滿足S△PAB=2.考點:1.待定系數(shù)法求二次函數(shù)解析式;2.二次函數(shù)的性質;1.二次函數(shù)圖象上點的坐標特征.23、1.3m【分析】由三點共線,連接GE,根據(jù)ED⊥AB,EF∥AB,求出∠GEF=∠EDM=90°,利用銳角三角函數(shù)求出GE,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,即可得到答案.【詳解】三點共線,連接GE,∵ED⊥AB,EF∥AB,∴∠GEF=∠EDM=90°,在Rt△GEF中,∠GFE=62°,,∴m,在Rt△DEM中,∠EMD=30°,EM=1m,∴ED=0.5m,∴h=GE+ED=0.75+0.5m,答:此刻運動員頭部到斜坡的高度約為1.3m.此題考查平行線的性質,銳角三角函數(shù)的實際應用,根據(jù)題意構建直角三角形是解題的關鍵.24、(1)拋物線與x軸交點坐標為:(﹣2+,0)(﹣2﹣,0)(2)﹣3<m<﹣1(3)當m=﹣時,S最大=【解析】分析:(1)與x軸相交令y=0,解一元二次方程求解;(2)應用配方法得到頂點A坐標,討論點A與直線l以及x軸之間位置關系,確定m取值范圍.(3)在(2)的基礎上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025人民醫(yī)院脊髓血管畸形手術技能考核
- 2025甘肅定西鄭州麥克萊恩心理醫(yī)院后勤人員招聘27人考前自測高頻考點模擬試題含答案詳解
- 大學課件管理
- 2025貴州民族大學參加第十三屆貴州人才博覽會引才60人考前自測高頻考點模擬試題及答案詳解參考
- 大學課件教學資源
- 2025年春季中國石油高校畢業(yè)生招聘(河南有崗)模擬試卷及答案詳解(有一套)
- 2025春期河南鴻唐教育集團招聘教師63人模擬試卷有答案詳解
- 衡水市中醫(yī)院感染性心內膜炎診斷標準考核
- 2025湖南益陽市交通投資運營集團有限公司招聘3人(第一批)考前自測高頻考點模擬試題及答案詳解(考點梳理)
- 2025北京林業(yè)大學雄安校區(qū)規(guī)劃建設指揮部招聘1人模擬試卷及參考答案詳解
- 《這就是中國-走向世界的中國力量》讀書筆記PPT模板思維導圖下載
- 口腔疾病治療質量控制課件
- 《直播營銷與運營》PPT商品選擇與規(guī)劃
- 貴州福貴康護理院裝修改造工程環(huán)評報告
- 貴陽區(qū)域分析
- 常見秋冬季傳染病預防
- CRM-客戶關系管理系統(tǒng)畢業(yè)論文
- 質量源于設計-QbD課件
- 倉儲物流安全隱患排查表-附帶法規(guī)依據(jù)
- 三年級道德與法治下冊不一樣的你我他
- 幼兒繪本故事:繪本PPT
評論
0/150
提交評論