




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TDWISnapshotSeries
2024
StateofAI
Readiness
ByFernHalper,Ph.D.
TDWI'sresearchexaminesthecurrentstateofAI,howreadyorganizationsaretoimplementit,andkeyareascriticalforsuccess
Co-sponsoredby:
TableofContents
ResearchMethodology 2
TheScopeandImportanceofAI 3
TheOverallStateofAIReadiness 4
TheStateofOrganizationalReadinessforAI 6
TheStateofDataReadinessforAI 8
TheStateofSkillsandOperationalReadinessforAI.10
BuildingDataandAILiteracy 13
TheStateofGovernanceReadinessforAI 14
AIModelGovernance 15
ConsiderationsandBestPracticesforAIReadiness 16
AboutOurSponsor 18
AbouttheAuthor 20
AboutTDWIResearch 20
2024
Stateof
AIReadiness
ByFernHalper,Ph.D.
?2024byTDWI,adivisionof1105Media,Inc.Allrights
reserved.Reproductionsinwholeorpartareprohibited
exceptbywrittenpermission.Emailrequestsorfeedback
toinfo@.Productandcompanynamesmentionedhereinmaybetrademarksand/orregisteredtrademarks
oftheirrespectivecompanies.Inclusionofavendor,
product,orserviceinTDWIresearchdoesnotconstituteanendorsementbyTDWIoritsmanagement.Sponsorshipofapublicationshouldnotbeconstruedasanendorsementofthesponsororganizationorvalidationofitsclaims.Thisreportisbasedonindependentresearchandrepresents
TDWI’sfindings;readerexperiencemaydiffer.The
informationcontainedinthisreportwasobtainedfrom
sourcesbelievedtobereliableatthetimeofpublication.
Featuresandspecificationscananddochangefrequently;
readersareencouragedtovisitvendorwebsitesforupdatedinformation.TDWIshallnotbeliableforanyomissionsor
errorsintheinformationinthisreport.
1
2024StateofAIReadiness2
ResearchMethodology
ThisStateofAIReadinessReportexaminesthe
currentstateofAIandhowreadyorganizationsareto
implementit.IthighlightskeyareascriticalforAIsuccess:
organizationalreadiness,datareadiness,skillsandtools
readiness,operationalreadiness,andgovernancereadiness.Itexamineschallengesorganizationsarefacingingetting
readyforAI.Additionally,itprovidesconsiderationsandbestpracticesformovingforwardwithAI.
Forthisstudy,TDWIexaminedseveralsurveysand
assessmentsthatwerunthroughouttheyear.Data
fromthisreportcomesprimarilyfromthe2024TDWI
AIReadinessAssessment.Over100respondentsfrom
variousindustriesandcompanysizeshaveparticipatedintheassessmenttodate,and113completedresponsesarereflectedinthefiguresinthisreport.Additionally,data
fromover250respondentstothe2024TDWIDataandAnalyticsSurveyisusedinthisreport.
ThisreportwassponsoredbyMongoDB,Pecan,andSAP.
2024StateofAIReadiness3
TheScopeandImportanceofAI
Fromatechnologicalstandpoint,AIisanumbrellaterm
AI
encompassingamyriadofmethodologiesandtechniques.Itleveragesadvancesinmathematics,computerscience,
computationallinguistics,cognitivesciences,and
robotics,amongothers.PopularAItechnologiesinclude
machinelearning,naturallanguageprocessing,and
neuralnetworks,whichcollectivelydrivetheintelligent
capabilitiesofmodernAIsystems.TDWIseesorganizationsbuildingAImodelstopredictchurnandothercustomer
behavior,identifyfraud,determinewhenmaintenancewillbeneeded,recommendproducts,andpredictdisease,
ComputerScienceMathematics
CognitiveSciences
ComputationalLinguistics
MachineLearning
Neural
Networks
amongotherusecases.Fromasocietalperspective,AI—particularlygenerativeAI—hasthepotentialtotransformindustries,enhancedecision-making,andsolvecomplexproblems,makingitanimportantforceintheongoing
digitalrevolution.
Practicallyspeaking,AIcanprovidetangiblebenefits
suchasdeeperinsights,increasedproductivity,improved
Natural
LanguageProcessing
Robotics
customerservice,andgreateroperationalefficienciesthatdrivecostsavingsandstrongertop-linegrowththatdeliverslargerprofits.InTDWIresearch,forinstance,weseethat
organizationsimplementingmoresophisticatedanalyticssuchasAIaremorelikelytoderivetop-orbottom-linebenefitsfromtheiranalyticseffortsthanothers.1Inotherwords,thereisreal,tangiblevaluefromAI.
1See2023TDWIBestPracticesReport:AchievingSuccesswithModernAnalytics,onlineat
/bpreports
.
2024StateofAIReadiness4
ToachievethebenefitsfromAI,organizationsneedto
understandtheproblemstheywanttosolveandhaveasoliddatafoundationthatsupportshighvolumesofdiversedata.TheywillneedtohaveorganizationalsupportandaculturethatchampionsAI.Thisincludestheskillsandtrainingto
makeAIareality.EnterpriseswillneedoperationalmodelsandteamsinplacetodeployAIintoproductionandensurethatthosemodelsstaycurrent.TheywillneedtogovernAItoensureitmeetscompliance,quality,andethicalconcerns.
WiththeadventofgenerativeAI,moreorganizationsare
feelingthepressuretoputanAIprogramtoworkintheir
company.Withoutthenecessaryfoundations,successwill
bedifficult.Executivebackingforthemoveisnecessarybutit'snotenough;organizationsmustbereadyforAIwiththeconsiderationsalreadymentioned.Forthesereasons,TDWIdevelopedtheAIReadinessAssessmentsoorganizations
couldseejusthowpreparedtheyaretostartanAIjourney.
TheOverallStateofAIReadiness
Therearenumerousinterrelatedfactorsthatformthe
currentstateofAIreadiness.Readinessisnotsimplya
matteroftryingoutAIsolutionsorbuildingapredictive
analyticsmodel.AIreadinessinvolvespeople,processes,
andtechnologies.Inthe2024TDWIAIReadiness
AssessmentwemeasuredfivekeydimensionsofenterprisefitnessandreadinesstouseAIoperationally:organizationalreadiness,datareadiness,skillsreadiness,operational
readiness,andgovernancereadiness.
Theoverallmedianscoreforallenterprisesrespondingtothe2024assessmentwas62outof100,whichputsrespondentsattheStandardizingstageofreadiness.
(Figure1).Likewise,forallrespondents,eachdimensionscoredanaveragethatputitintheStandardizingstage.
stage1stage2stage3stage4stage5
Organizationalreadiness
12.6/20
Data
readiness
12.2/20
Skills
readiness
10.8/20
Operationalreadiness
11.9/20
Governancereadiness
11.6/20
Figure1.ThestagesofAIreadinessandparticipants’averagescoresforeachdimension.
2024StateofAIReadiness5
DuringtheStandardizingstage,thecompanyisintheprocessofputtingastrategyinplaceforAI.Thismayincludesomepreliminaryusecasesanorganizationislookingtoputinplace.Theymayalreadybebuildingproofsofconcept.Leadershipistypicallyonboard
withAIandunderstandstheimpactitcanhaveonthe
business,althoughitmaynotunderstandwhatittakestoimplementAI.ThatalsomeansthatleadershipmaynotyetbecommittedtoinvestingthenecessaryresourcesforAIdevelopment,includingtechnology,talent,andtraining.
Inthisstage,anorganizationistypicallycollectingmore
thanjuststructureddata,althoughitmaynotbeanalyzingityet.Thismayincludeemails,callinteractionnotes,
freeformtextinsurveyanswers,socialmediadata(blogs,tweets),machine-generateddata,geospatialdata,real-timeeventdata,audio,video,weblogs,clickstreams,
scientificdata,anddemographicdata.Theyareworkingtomakethisdataeasilyaccessible.Theytypicallyutilizearangeofdataplatformsincludingadatawarehouseordatalake,bothonpremisesandinthecloud,tomanagethisdiversedata.Theseplatformscansupportbuildingpredictiveanalyticsandmachinelearningmodelsagainststructureddata.Enterprisesaretryingtoimplementanarchitecturetosupportdatagrowth.
Anorganizationatthisstageistypicallystartingtobuildpredictivemodelsandmayhaveafewdatascientists
inplace.Theyrealizethatthereareotherskillsthatareneededtoo,suchasdataengineersandoperationstobuildpipelinesandputmodelsintoproduction.They
Inthisstage,anorganizationistypically
collectingmorethanjuststructureddata,
whichcaninclude:
Emails
Geospatialdata
Demographicdata
VideoAudio
Tweetsand
blogs
Surveyanswers
mayormaynotbebeginningtohirethiskindoftalent.
Typically,anorganizationisonlystartingtothinkaboutAIgovernanceoroperationalizingAI.
TDWIhasseensimilarresultsinothersurveys.For
instance,inouryearlydataandanalyticssurveywesee
thatorganizationsaremovingtowardspredictiveanalyticsandmachinelearning.Theirtopprioritiesaretoputadatainfrastructureinplacetosupportthesemodernanalyticsandtogovernthisenvironmenteffectively.2
ThefollowingsectionsdrillintoeachoftheAIReadinessdimensionsinmoredetail.
2Unpublished2024TDWIsurvey.
2024StateofAIReadiness6
TheStateofOrganizationalReadinessforAI
OrganizationalcommitmentiscriticalformovingforwardwithAI.Organizational
readinessscoredthehighestmarksintheassessment.Thisincludesleadership
commitment.AtTDWIweseethatalthoughexecutivesandothersmayappreciatethevalueofAI,thatdoesn’tnecessarilymeantheywillprovidethehelpneededtobuildadatastrategy,workonaculturetosupportit,fundit,orcommunicatetheeffort.Forinstance,intheAIReadinessAssessment,althoughmanyorganizationsareworking
onanAIstrategy,onlyabout30%haveoneinplaceandareexecutingonitorare
currentlyintheprocessofbuildingitoutnow(Figure2).Over35%areintheprocessofthinkingaboutthestrategy.OtherTDWIresearchfoundsimilarresults.
9%
OurAIstrategyisalreadyinplaceandweareexecutingonit
MycompanyhasadefinedstrategyforleveragingAItoenhanceourcompetitiveadvantage
21%
Yes,weareinthe
processofbuildingout
anAIstrategynow
37%
20%
No,butweplanto
dosointhenext
year
Yes,weareintheprocess
ofthinkingthroughhow
todothatnow
Figure2.StatusofAIstrategy.
No,andwe
13%havenoplans
todoso
2024StateofAIReadiness7
Likewise,manyorganizationsareonthefencewhenitcomestowhethertheirorganization’sleadershipiscommitted
toinvestingthenecessaryresourcesforAIdevelopment
(includingtechnology,talent,andtraining)andrecognizingthelong-termvalueoftheseinvestments(Figure3).Less
thanhalfoftheassessmentrespondentssaytheirleadershiphascommittedfunding.
Respondentsarealsostillworkingonotherorganizational
readinessfactorsforAIsuchasaculturalshifttowards
innovation,continuouslearning,andadaptabilityrequired
forsuccessfulAIimplementationaswellasacultureoftrusttowardAI.Forinstance,inthereadinessassessment,only
28%ofrespondentsstatedtherewasacultureoftrustforAIintheirorganization(notshown).AboutathirdsaidtheyhadacollaborativeculturetosupportAI(notshown).
Myorganization'sleadershipiscommitted
toinvestingthenecessaryresourcesfor
AIdevelopment
13%
32%
37%
6%
11%
Completelydisagree
Completely
agree
Disagree
Agree
Neutral (Neitheragreenordisagree)
Figure3.LeadershipcommitmenttoAI,includinginvestments
intechnology,talent,andtraining.
2024StateofAIReadiness8
TheStateofDataReadinessforAI
Organizationalcommitmentcanmakeorbreakan
enterprise’sreadinessforAI,butsuccesswithAIrequiresmore.OrganizationsmustalsohavethedataplatformsinplacetosupportAI.AIoftendealswithlargevolumesofdiversedata.AImodelscanbecomputationallyexpensivetobuildandoperate,andthisisespeciallythecasewithgenerativeAI.Itiscriticalforanorganizationtohavea
soliddatafoundationtosupportitsAIefforts.
Theoveralldatareadinessscorewas12.2,secondonlyto
organizationalreadiness.Thismiddle-of-the-roadscore
isinlinewithwhatweseeinotherTDWIresearch.Many
organizationshavemadethemovetoclouddatawarehousesandclouddatalakestosupportdiversedatatypes.Inmanycases,theseorganizationshavehybridenvironmentsthat
areoftenmultiplatform.AIReadinessAssessmentresponsesindicatethatmanycompanieshavenotyetachievedthe
maturityintheirplatformstobecompletelyreadyforAI.
Forinstance,animportantpartofbeingreadyforAIisthe
abilitytointegratedatafrommultiplesourcestobuildan
enrichedandrobustdatasetfortrainingamodel.Althoughorganizationsaremakingprogressonthisfront—slightly
morethan40%ofrespondentscandothistoday(Figure4)—therestareonthefenceordon’thavethesystemsinplacetomakedataeasilyaccessibleforAI.
Myorganizationhassystemsinplaceto
ensurethatdataiseasilyaccessibleandcan
beintegratedfromdiversesources
40%
32%
35%
30%
30%
25%
20%
20%
15%
10%
7%
10%
5%
0%
Completelydisagree
Disagree
NeutralAgreeCompletely
(Neitheragree
agreenordisagree)
Figure4.Theaccessibilityofdatafromdiversesources,including
internalandexternaldatasets.
2024StateofAIReadiness9
InotherTDWIresearch,we’veseenthatmakingdata
accessibleformodelsisatopanalyticspriorityfor
organizations.3Moreenterprisesareestablishingthatdata
foundation.However,themajorityofassessmentrespondents(59%)eitherdisagreeorareuncertainabouthavingatrusteddatafoundationinplaceforanalytics(notshown).
Partofthechallengecanbeattributedtorespondentsstilldealingwithsiloeddatainfrastructures.Forinstance,intheassessmentweasked,“Whichofthefollowingstatements
bestdescribesthedataplatformtechnologiesyourcompanyutilizestoday?”(Figure5).Twenty-fourpercentareusinga
datawarehouseoradatamart.Another22%areutilizingadatawarehouseandadatalakebutsaytheyaresiloed.
Althoughthemajorityhavesometypeofplatform,thereareareasforimprovement.Forinstance,wheredatafromdifferentplatformsisintegrated,itistypicallystructureddata.Morethanhalfoftherespondentsdonotbelieve
theirorganizationhastheadvancedanalyticscapabilitiesandcomputationalresourcesnecessarytodevelop,train,anddeployAImodelsefficiently(notshown).
Toolsonthemarketcanautomaticallybuildmachinelearningmodels,buttheyneedthedatatobeatleastBIready(in
somesortofdatawarehouse).ThesetoolscanbeagoodstartingpointforAIprograms,buttheystillrequiremore(suchasoperationalreadinessandgovernancereadiness,discussedinthenextsections)tobecometrulyready.
Whichofthefollowingstatementsbest
describesthedataplatformtechnologies
yourcompanyutilizestoday?
Weuseflatfilesorspreadsheets
24%
Wehaveadatawarehouseordatamart
22%
Weuseourdatawarehousetogetherwithadatalakeorotherplatform,buttheyaresiloed
Weusearangeoftechnologiesincludingourdatawarehouse,datalake, cloud,orotherandwearearchitectingthemtogetherasanecosystem
Weusearangeofapproachesthatformawell-architectedenvironmentfordataaccess
0%10%20%30%40%50%
Figure5.Currentdataplatformtechnologiesinuse.
11%
38%
6%
3Unpublished2024TDWIdataandanalyticssurvey.
2024StateofAIReadiness10
Inotherwords,organizationsaremakingprogresswith
theirdatainfrastructurestosupportAI,butsomestill
haveworktodo.Thisexplainswhylessthan30%of
respondentsagreedwiththestatement,“MyorganizationhasacompanywidedataarchitectureinplaceforAIthatcanhandleusergrowth”(notshown).
Organizationswillneedtofocusontheirdatainfrastructure,especiallyiftheyplantobuildgenerativeAIapplications
utilizingcompanydata.Thisappearstobeapriorityfor
organizations;generativeAIrankedinthetopfourprioritiesforanalyticsin2024,aheadofmachinelearning.4Yet,AIorgenerativeAIsuccesswillrequireasoliddatafoundation,
capableofscalingandsupportinghighperformance.
4Unpublished2024TDWIdataandanalyticssurvey.
TheStateofSkillsandOperationalReadinessforAI
TomakeAIsuccessful,anorganizationneedstheright
skills—morethanjustdatascienceskills,thoughtheyareclearlyimportant.Enterpriseswillneeddataengineeringskills(forbuildinganddeployingdatapipelines),
operationalskills(forversioningmodels,puttingthem
intoproduction,andmonitoringthemfordriftoncein
production),anddevelopmentskills(forbuildingapps
utilizingAIandgenerativeAI).Knowledgeofthebusinesswillalsobeimportant.
Asmentioned,manyorganizationsarehiringdatascientiststohelpbuildtheskillsetneededforAI.IntheAIReadinessAssessment,aboutone-thirdofrespondentsdon’thave
anydatascientistsontheirteam,anotherone-thirdhavestartedtohirethem,andtherestalreadyhavetheminplace(notshown).
Thesedatascientistswillhelpanorganizationget
startedwithbuildingAImodels,butothers,suchasdataengineers,arealsocriticaltotheprocess.Infact,when
weaskorganizationswhatskillstheyneed,theyoftencitedataengineers.
IntheAIReadinessAssessment,weaskedwhether
respondentsemploydataengineerstobuilddata
pipelinesforAI.Theseengineersareresponsiblefor
managingandpreparinglargedatasetsforAI,ensuringdataqualityandaccessibility.
2024StateofAIReadiness11
Figure6showsthatabouthalfoftherespondentshavethisrole;therestdonot.Itwillbeimportantfororganizationstoplanforthisrolebecausebuildingandorchestrating
pipelinesisoftenchallenging.
ArecenttrendinpredictiveanalyticsandAIisto
democratizeit,inotherwordstoopenupAItoawider
audience.Insomecases,thisaudiencecanincludebusinessanalysts(thosewhobuilddashboardsandreports).TheseorganizationstypicallyhaveadatawarehouseordatalakeandanalystsarerunningBIreportsfromthisinfrastructure.
ManyoftheseanalystsarereadyforAI;theyareinterestedingrowingtheirskillset.Theymaybeboredwithsimply
producingdashboards.TheyalsounderstandthemovetoAIandwanttogotothenextstep.Theyunderstandtheirdataandthebusiness.
OneoftheissueswhenmovingintoanAIprojectishow
youwillbuildyourorganizationalculturesoitcanadopt
AImodels.Oftendatascientistsaren’tconnectedwith
thebusinessandthatcanbeanissue.Businessanalysts
dounderstandthebusiness.Intheassessment,21%of
respondentsfeltthatbusinessanalystshavetheskillstheyneedforAItoday;another43%feltthatbusinessanalysts
couldperformdatasciencewithhelpfromothers(not
shown).Thiscanrequiretherighttoolsthatareeasyenoughtouse.Forinstance,someofthetoolsonthemarket
providenaturallanguageinterfaces(oftenviagenerativeAI)tohelpemployeeswithoutdatascienceskillsbuildmodels.
Myorganizationemploysdataengineers
tobuilddatapipelinesforAI;theyare
responsibleformanagingandpreparing
largedatasetsforAI,ensuringdataquality
andaccessibility.
17%
No,andI'mnotsurewearethinkingaboutdataengineers
36%
No,howeverwerealizethisisimportantandmaybetryingtoworkonitadhocwithexistingstafforoutsourceit
20%
Wearedevelopingadedicatedgrouporstaffmembersresponsibleforthis,orweareworkingwithanoutsidegroup
15%
Wehavededicatedteammemberswithaspecificmandateandresourcesforthis
12%
Wehaveacompleteteamwithenough dataengineers,DevOps,andsimilarpersonneltosupportourfullcapacityofneeds
0%10%20%30%40%50%
Figure6.Statusofdataengineeringteamsforbuildingdatapipelines.
2024StateofAIReadiness12
Itwillalsobeimportantnottosimplyfocusonthefront
endofmodelbuildingbuttoconsiderwhoisgoingtoputmodelsintoproductionandthenmanagethem.Thisis
wheretheOpsteamcomesintoplay.Ifyoucan’tputthemodelintoproduction,yourorganizationwon’tgetthefullvaluefromit.
Yet,onlyaboutone-thirdofrespondentsagreedwiththestatement,“Myorganizationhasorplanstosoonhavethetoolsandskillsforeffectivedeployment,monitoring,andmanagementofAImodelsinproduction,ensuringthey
performasexpectedovertimeandcanbeupdatedor
retrainedasnecessary”(notshown).Usingdatascientiststofilltheserolessimplywon’tscale.
Additionally,AIoftenrequiresdeveloperstobuild
applicationsthatutilizeAI;thisisespeciallythecasefor
generativeAIapplicationssuchaschatbotsorthosethatusecompanydata.ThismaybeassimpleasusinggenerativeAItosummarizecallcenternotesoritmaybemorecomplex,suchasusinggenerativeAItogeneratepersonalized
marketingmessagesbyusingtraditionalmachinelearningmodelsinconjunctionwithgenerativeAIoutput.
Often,thisinvolvesusingnewertechnologysuchas
convertingeachwordinasentenceintoavectorusingapre-trainedwordembeddingmodelandstoringtheminavectordatabaseforusebythegenerativeAImodel.
Thismayalsoincluderetrieval-augmentedgeneration,wherethevectorembeddingmightbecombinedwithapromptandsenttothegenerativeAIsystemthatusesittogenerateanin-contextresponse.Buildingthese
applicationsoftencallsfordevelopmentexpertise.
However,lessthan30%ofrespondentsbelievethattheyhavetheskillsinthesoftwareengineeringtechniquesthatwouldberequiredforputtingmodelsintoproduction
inapplicationsorbusinessprocesses(notshown).This
illustratesthatmanyorganizationsarestillatthebeginningoftheirAIjourney.
2024StateofAIReadiness13
BuildingDataandAILiteracy
AnotheraspectofreadinessskillsforAIincludesdataliteracy.Asmentioned,insomecases,organizationsarelookingtodemocratizetheiranalyticsandmakeuseofautomatedandaugmentedtoolsonthemarketthat
canhelpbusinessanalystsandothersbuildAImodels.
Althoughthesetoolscanbeeasytouseandbusiness
analystshavethecriticalthinkingskillsandknowledgeofthebusinesstoexecute,theywillstillultimatelyneedtobetrainedinAItechniques.
Inadditiontobusinessanalysts,otherinthebusiness
mayneedtounderstandthefoundationalconceptsofAIiftheyareusingtheoutputsofmodelsfortheirjoborif
theyareutilizingtoolssuchasgenerativeAIforcreating
marketingcontent(orotherusecases).IntheAIReadinessAssessment,abouthalfoftherespondentsstated
theyregularlyscheduletrainingandencourage—ifnot
mandate—employeestoattendtoensureemployeesarewellequippedwiththelatestinAIandanalyticsknowledgeandskills,ortheyfundinternalandexternaltrainingfor
employeeswhoneedtobuildskillsorgrowprofessionally(notshown).Thisisdefinitelyastepintherightdirection.
2024StateofAIReadiness14
TheStateofGovernanceReadinessforAI
InTDWIsurveys,weroutinelyseethatdatagovernance
isatoppriorityfororganizations,especiallyastheytry
tomodernizetheirenvironments.TDWIdefinesdata
governanceasthepracticeofensuringthatbusinessdataremainsfitforuse.Itfocusesonthepeople,processes,
policies,rules,andregulationsforachievingspecificgoalsforamanageddataresourceandbuildingtrustinthedata.
AsorganizationsmovetoAI,theymustensurethattheir
dataremainsfitforuseandthatitisaccurate,complete,
andtimely.Theadage“garbageingarbageout”definitely
applieshere.Thisdataqualitywillneedtobeinplacefor
structuredaswellasunstructureddatatypes.PreviousTDWIresearchindicatesthatorganizationsareonlystartingto
thinkabouthowtoensuredataqualityfornewkindsofdata.
Additional
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 5.4 平移教學(xué)設(shè)計(jì)初中數(shù)學(xué)人教版2012七年級(jí)下冊(cè)-人教版2012
- 2025年通化市稅務(wù)系統(tǒng)遴選面試真題帶詳解含答案
- 2025年消防面試體能考試題及答案
- 第三節(jié) 重力說(shuō)課稿-2025-2026學(xué)年初中物理北師大版2024八年級(jí)下冊(cè)-北師大版2024
- 2025年醫(yī)院管理學(xué)考試題及附答案
- 機(jī)器視覺(jué)工程師招聘面試題回答(某大型國(guó)企)2025年附答案
- 2025年臨床醫(yī)師定期考核必考復(fù)習(xí)題庫(kù)及答案(620題)
- 算力與電力協(xié)同下電動(dòng)汽車(chē)路徑規(guī)劃與多資源調(diào)度研究
- 基于噴吹靜電紡紗工藝的納米紗線性能研究
- 2025年醫(yī)療定向護(hù)理考試試題庫(kù)及答案
- 駕校教練安全知識(shí)培訓(xùn)課件
- 本科教學(xué)審核評(píng)估匯報(bào)
- 《直線方程的兩點(diǎn)式》教學(xué)設(shè)計(jì)
- 01 華為采購(gòu)管理架構(gòu)(20P)
- 望洞庭教學(xué)課件
- 都江堰水利工程課件
- 液氮運(yùn)輸投標(biāo)方案(3篇)
- 《2019年甘肅省職業(yè)院校技能大賽學(xué)前教育專(zhuān)業(yè)教育技能賽項(xiàng)競(jìng)賽規(guī)程(高職教師組)》
- 《智能制造技術(shù)與工程應(yīng)用》全套教學(xué)課件
- TSG T5002-2017 電梯維護(hù)保養(yǎng)規(guī)則
- 2025年全國(guó)保密教育線上培訓(xùn)考試試題庫(kù)附答案【考試直接用】含答案詳解
評(píng)論
0/150
提交評(píng)論