




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
平行線的性質(zhì)1、掌握平行線的三條性質(zhì),并能應(yīng)用它們進(jìn)行簡(jiǎn)單的推理論證;2、理解平行線性質(zhì)的區(qū)別和聯(lián)系。學(xué)習(xí)目標(biāo)重點(diǎn):探索并掌握平行線的性質(zhì),能用平行線的性質(zhì)進(jìn)行簡(jiǎn)單的推理和計(jì)算.難點(diǎn):能區(qū)分平行線的性質(zhì)和判定方法.重點(diǎn)和難點(diǎn)判定方法1
同位角相等,兩直線平行.判定方法2
內(nèi)錯(cuò)角相等,兩直線平行.判定方法3
同旁內(nèi)角互補(bǔ),兩直線平行.平行線的判定新課導(dǎo)入結(jié)論兩直線平行條
件結(jié)
論?同位角??jī)?nèi)錯(cuò)角?同旁內(nèi)角?條件結(jié)論兩條平行線被第三條直線所截知識(shí)點(diǎn)平行線的性質(zhì)思考兩條平行線被第三條直線截得的同位角會(huì)具有怎樣的數(shù)量關(guān)系?
知識(shí)講解
如圖,已知直線
a∥b
,c是截線.bac12345678探究角∠1∠2∠3∠4度數(shù)角∠5∠6∠7∠8度數(shù)100°80°100°80°100°80°100°80°∠1,∠2,···,∠8中,哪些是同位角?它們的度數(shù)具有什么關(guān)系?∠1與∠5;∠4與∠8;∠2與∠6;∠3與∠7分別為同位角課本P18探究相等由此猜想:兩條平行線被第三條直線截得的同位角具有什么關(guān)系??jī)蓷l平行線被第三條直線截得的同位角相等再任意畫一條截線
d,同樣度量并比較各對(duì)同位角的度數(shù),你的猜想還成立嗎?bac12345678d成立性質(zhì)1
兩條平行線被第三條直線所截,同位角相等.簡(jiǎn)單說成:兩直線平行,同位角相等.歸納幾何語言:思考如圖,如果AB∥CD,直線c與AB,CD相交,那么∠2與∠3,在數(shù)量上有什么關(guān)系?并說明理由.分析:AB∥CD∠1=∠2∠1=∠3(對(duì)頂角相等)∠2=∠3如圖,如果AB∥CD,直線c與AB,CD相交,那么∠2與∠3,在數(shù)量上有什么關(guān)系?并說明理由.∠2=∠3.理由如下:∵AB∥CD∴∠1=∠2(兩直線平行,同位角相等)又∵∠1=∠3(對(duì)頂角相等)∴∠2=∠3性質(zhì)2
兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等.簡(jiǎn)單說成:兩直線平行,內(nèi)錯(cuò)角相等.歸納幾何語言:思考如圖,如果AB∥CD,直線c與AB,CD相交,那么∠2與∠4,在數(shù)量上有什么關(guān)系?并說明理由.分析:AB∥CD∠1=∠2∠1+∠4=180°∠2+∠4=180°如圖,如果AB∥CD,直線c與AB,CD相交,那么∠2與∠3,在數(shù)量上有什么關(guān)系?并說明理由.∠2+∠4=180°理由如下:∵AB∥CD∴∠1=∠2(兩直線平行,同位角相等)又∵∠1+∠4=180°∴∠2+∠4=180°你還有別的證法嗎?性質(zhì)3
兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).簡(jiǎn)單說成:兩直線平行,同旁內(nèi)角互補(bǔ).幾何語言:例1如圖,是一塊梯形鐵片的殘余部分,量得∠A=100°,∠B=115°,梯形的另外兩個(gè)角分別是多少度?分析:因?yàn)樘菪紊?、下兩底AB∥CD
,根據(jù)“兩直線平行,同旁內(nèi)角互補(bǔ)”,可得∠A與∠D互補(bǔ),∠B與∠C互補(bǔ).
∠D=180°-∠A=180°-100o=80°,∠C=180°-∠B=180°-115°=65°.所以,梯形的另外兩個(gè)角分別是80°,65°.解:(兩直線平行,同旁內(nèi)角互補(bǔ))(已知)(已知)解:∠2=110°.∵AB∥CD(已知)∴∠1=∠2(兩直線平行,內(nèi)錯(cuò)角相等)∵∠1=110°(已知)∴∠2=110°.例2如圖,平行線
AB
,CD
被直線
AE
所截.(1)從∠1=110°.可以知道∠2是多少度嗎?為什么?例2如圖,平行線
AB
,CD
被直線
AE
所截.(2)從∠1=110°.可以知道∠3是多少度嗎?為什么?解:∠3=110°.∵AB∥CD(已知)∴∠1=∠3(兩直線平行,同位角相等)∵∠1=110°(已知)∴∠3
=110°.例2如圖,平行線
AB
,CD
被直線
AE
所截.(3)從∠1=110°.可以知道∠4是多少度嗎?為什么?解:∠4=70°.∵AB∥CD
(已知)∴∠1+∠4=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).∵∠1=110°(已知)∴∠4=180°-110°=70°.例3如圖,已知
AB∥CD,AE∥CF,∠A=39°,∠C
是多少度?為什么?方法一解:∵AB∥CD(已知)∴∠C=∠1(兩直線平行,同位角相等)∵
AE∥CF(已知)∴∠A=∠1(兩直線平行,同位角相等)∴∠C=∠A(等量代換).∵∠A
=39°(已知)∴∠C
=39°.12方法二解:∵AB∥CD(已知)∴
∠C=∠2(兩直線平行,內(nèi)錯(cuò)角相等)∵
AE∥CF(已知)∴
∠A=∠2(兩直線平行,內(nèi)錯(cuò)角相等)∴
∠C=∠A(等量代換)∵∠A=39°(已知)∴∠C=39°.對(duì)比平行線的性質(zhì)和判定方法,你能說出它們的區(qū)別嗎?
條件結(jié)論判定同位角相等兩直線平行內(nèi)錯(cuò)角相等同旁內(nèi)角互補(bǔ)性質(zhì)兩直線平行同位角相等內(nèi)錯(cuò)角相等同旁內(nèi)角互補(bǔ)1.如圖,直線
a∥b,∠1=54°,∠2,∠3,∠4各是多少度?解:∵a∥b,∠1=54°∴∠4=∠1=54°(兩直線平行,同位角相等).∴∠2=∠1=54°(對(duì)頂角相等)∠3=180°-∠4=180°-54°=126°,鞏固練習(xí)拓展提高2.如圖,直線a,b被第三條直線c所截,如果a∥b,∠1=70°,那么∠3的度數(shù)是
.70°3.如圖,將三角板的直角頂點(diǎn)放在兩條平行線a、b中的直線b上,如果∠1=40°,則∠2的度數(shù)是
50°4.如圖,AB∥CD,AD平分∠BAC.若∠CDA=70°,則∠CAD的度數(shù)為
.70°5.如圖:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,則∠BCD的度數(shù)是多少?解:∵AB∥CF,∠ABC=70°(已知),
∴∠BCF=∠ABC=70°(兩直線平行,內(nèi)錯(cuò)角相等)
∵DE∥CF,∠CDE=130°(已知),
∴∠DCF+∠CDE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 菏澤教師音樂真題及答案
- 2025年濮陽招教考試試題及答案
- 化學(xué)與環(huán)境聯(lián)系應(yīng)用試題
- 化學(xué)平衡狀態(tài)判斷專題試題
- 公路試驗(yàn)工考試題及答案
- 2025年高考物理“學(xué)習(xí)反思”促進(jìn)試題
- 2025年中考美術(shù)貴州試卷及答案
- 工藝培訓(xùn)考試題及答案解析
- 工程估價(jià)自考試題及答案
- 2025安徽固鎮(zhèn)縣連城鎮(zhèn)招聘村級(jí)后備人才3人模擬試卷附答案詳解(突破訓(xùn)練)
- 2025年醫(yī)院領(lǐng)導(dǎo)競(jìng)聘面試題與參考答案
- 黑龍江省高等教育教學(xué)成果獎(jiǎng)申請(qǐng)書
- 2025中礦金石實(shí)業(yè)有限公司社會(huì)招聘?jìng)淇伎荚囶}庫(kù)附答案解析
- 2025年屠檢考務(wù)試卷及答案
- (正式版)DB65∕T 4260-2019 《薰衣草優(yōu) 質(zhì)種苗組培快繁生產(chǎn)技術(shù)規(guī)程》
- 五金材料知識(shí)培訓(xùn)課件
- 23《富貴不能淫》(公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì))統(tǒng)編版語文八年級(jí)上冊(cè)
- 校園科技教育主題班會(huì)活動(dòng)方案
- 綠色食品認(rèn)證合同協(xié)議
- 七年級(jí)生物分組實(shí)驗(yàn)案例解析
- 筑夢(mèng)青春強(qiáng)國(guó)有我+課件-2025-2026學(xué)年高二上學(xué)期國(guó)慶節(jié)主題班會(huì)
評(píng)論
0/150
提交評(píng)論