




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1.4.3二次函數(shù)的應(yīng)用(3)教學(xué)設(shè)計課型新授課√復(fù)習(xí)課口試卷講評課口其他課口教學(xué)內(nèi)容分析本節(jié)課是浙教版九年級上冊二次函數(shù)的應(yīng)用第三課時的內(nèi)容,是學(xué)生在學(xué)習(xí)和掌握了二次函數(shù)的圖象和性質(zhì)以及在一元二次方程的基礎(chǔ)上來研究二次函數(shù)與一元二次方程的關(guān)系。本節(jié)課與用函數(shù)觀點看方程(組)比較類似,因此學(xué)生對函數(shù)與方程之間的聯(lián)系已不再陌生。通過本節(jié)課的學(xué)習(xí),學(xué)生可以進一步加深對二次函數(shù)的圖象和性質(zhì)的理解,同時讓學(xué)生進一步體會數(shù)形結(jié)合思想,也是為以后高中學(xué)習(xí)一元二次不等式打下基礎(chǔ)。學(xué)習(xí)者分析大部分學(xué)生理解能力、思維能力參差不齊,學(xué)生學(xué)好數(shù)學(xué)的自信心和數(shù)學(xué)建模的能力還不強。通過前面的學(xué)習(xí),學(xué)生有一定的知識技能基礎(chǔ),能夠正確解方程(組),掌握了一次函數(shù)及其圖象的基礎(chǔ)知識,已經(jīng)具備了函數(shù)的初步思想,對于數(shù)形結(jié)合的數(shù)學(xué)思想也有所接觸,能夠根據(jù)已知條件準(zhǔn)確畫出一次函數(shù)圖象,在過去已有經(jīng)驗基礎(chǔ)上能夠加深對“數(shù)”和“形”間的相互轉(zhuǎn)化的認識,學(xué)生對生活中的數(shù)學(xué)問題興趣濃厚,有多次小組合作解決實際問題的體驗。教學(xué)目標(biāo)1.了解一元二次方程的根的幾何意義,掌握用二次函數(shù)圖象求解一元二次方程的根.2.通過圖象,了解一元二次方程與二次函數(shù)的關(guān)系,體會數(shù)與形的完美結(jié)合.3.通過對小球飛行問題的分析,感受數(shù)學(xué)的應(yīng)用,在求解過程中,體會解決問題的方法,培養(yǎng)學(xué)生的合作交流意識和探索精神.教學(xué)重點1.從數(shù)和形兩個角度理解二次函數(shù)與一元二次方程的關(guān)系;2.掌握二次函數(shù)與一元二次方程的互相轉(zhuǎn)化問題.教學(xué)難點1.靈活運用二次函數(shù)與一元二次方程的關(guān)系解決問題;2.利用函數(shù)的圖象求一元二次方程的近似解.學(xué)習(xí)活動設(shè)計教師活動學(xué)生活動環(huán)節(jié)一:新知導(dǎo)入教師活動1:教師出示問題:想一想:一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)有什么關(guān)系?當(dāng)一次函數(shù)中的函數(shù)值y=0時,一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)的圖象與x軸交點的橫坐標(biāo)即為一元一次方程kx+b=0的解?,F(xiàn)在我們學(xué)習(xí)了一元二次方程和二次函數(shù),它們之間是否也存在一定的關(guān)系呢?學(xué)生活動1:學(xué)生思考老師提出的問題?;顒右鈭D說明:學(xué)生復(fù)習(xí)一元一次方程和一次函數(shù)的關(guān)系,為本節(jié)課所學(xué)內(nèi)容做鋪墊。環(huán)節(jié)二:用二次函數(shù)解決拋球問題教師活動2:教師出示課本問題:【例4】一個球從地面上豎直向上彈起時的速度為10m/s,經(jīng)過t(s)時球的高度為h(m).已知物體豎直上拋運動中,h=v0t-gt2(v0表示物體運動上彈開始時的速度,g表示重力系數(shù),取g=10m/s2).問球從彈起至回到地面需多少時間?經(jīng)多少時間球的高度達到3.75m?分析:根據(jù)已知條件,我們?nèi)菀讓懗鰄(m)關(guān)于t(s)的二次函數(shù)表達式h=10t-5t2,并畫出函數(shù)的大致圖象.從圖象我們可以看到,圖象與橫軸的兩個交點分別為(0,0),(2,0),它們的橫坐標(biāo)分別為0與2,就是球從地面彈起和回到地面的時刻,此時h=0,所以這兩個時刻也就是一元二次方程10t-5t2=0的兩個根.這兩個時刻的差就是球從地面彈起至回到地面所需的時間.同樣,我們只要取h=3.75m,得一元二次方程10t-5t2=3.75,求出它的根,就得到球達到3.75m高度時所經(jīng)過的時間.解:由題意,得h(m)關(guān)于t(s)的二次函數(shù)表達式為h=10t-5t2.取h=0,得一元二次方程10t-5t2=0,解這個方程,得t1=0,t2=2.所以球從地面彈起至回到地面所需的時間為t2-t1=2(s).取h=3.75,得一元二次方程10t-5t2=3.75,解這個方程,得t1=0.5,t2=1.5.答:球從彈起至回到地面需2s,經(jīng)過0.5s或1.5s球的高度達到3.75m.【總結(jié)歸納】從上例我們看到,可以利用解一元二次方程求二次函數(shù)的圖象與橫軸(或平行于橫軸的直線)的交點坐標(biāo).反過來,也可以利用二次函數(shù)的圖象求一元二次方程的解.學(xué)生活動2:學(xué)生思考,回答課本中的問題。學(xué)生在教師的引導(dǎo)下完成解題過程,教師講解解題方法。學(xué)生共同總結(jié)利用二次函數(shù)解決拋球問題的方法?;顒右鈭D說明:數(shù)學(xué)不能脫離生活實際,通過例題,加深對知識了解,做到數(shù)和形完美結(jié)合,經(jīng)過此題有意訓(xùn)練,培養(yǎng)學(xué)生的思維嚴密性,為以后能靈活地利用知識處理問題奠定了堅實基礎(chǔ)。環(huán)節(jié)三:探究二次函數(shù)與一元二次方程的關(guān)系教師活動3:【例5】利用二次函數(shù)的圖象求方程x2+x-1=0的解(或近似解).解:設(shè)y=x2+x-1,則方程x2+x-1=0的解就是該函數(shù)圖象與x軸交點的橫坐標(biāo).在直角坐標(biāo)系中畫出函數(shù)y=x2+x-1的圖象:由函數(shù)y=x2+x-1的圖象得到與x軸的交點為A,B,則點A,B的橫坐標(biāo)x1,x2就是方程的解.觀察,得到點A的橫坐標(biāo)x1≈0.6,點B的橫坐標(biāo)x2≈-1.6.所以方程x2+x-1=0的近似解為x1≈0.6,x2≈-1.6.【總結(jié)歸納】利用二次函數(shù)的圖象解一元二次方程的基本步驟:1.在平面直角坐標(biāo)系內(nèi)畫出二次函數(shù)的圖象;2.觀察圖象,確定拋物線與x軸的公共點的坐標(biāo);3.公共點的橫坐標(biāo)就是對應(yīng)的一元二次方程的解.學(xué)生活動3:學(xué)生在教師的指導(dǎo)下完成課本例題。師生共同完成解題過程。學(xué)生在教師的引導(dǎo)下總結(jié)求利用二次函數(shù)的圖象解一元二次方程的基本步驟?;顒右鈭D說明:學(xué)生能夠運用已學(xué)知識解決問題,這樣既能提高學(xué)生解決問題興趣,又培養(yǎng)學(xué)生觀察、分析、歸納問題、邏輯理解的能力。課堂總結(jié)本節(jié)課你學(xué)到了哪些知識?1.可以利用解一元二次方程求二次函數(shù)的圖象與橫軸(或平行于橫軸的直線)的交點坐標(biāo).反過來,也可以利用二次函數(shù)的圖象求一元二次方程的解.2.利用二次函數(shù)的圖象解一元二次方程的基本步驟:(1)在平面直角坐標(biāo)系內(nèi)畫出二次函數(shù)的圖象;(2)觀察圖象,確定拋物線與x軸的公共點的坐標(biāo);(3)公共點的橫坐標(biāo)就是對應(yīng)的一元二次方程的解.板書設(shè)計課題:1.4.3二次函數(shù)的應(yīng)用(3)一、投球問題二、利用二次函數(shù)的圖象解一元二次方程課堂練習(xí)【知識技能類作業(yè)】必做題:1.豎直上拋的物體離地面的高度h(m)與運動時間t(s)之間的關(guān)系可以近似地用公式h=-52+v0t+h0表示,其中h0(m)是物體拋出時離地面的高度,v0(m/s)是物體拋出時的速度.某人將一個小球從距地面1.5m的高處以10m/s的速度豎直向上拋出,則小球達到的離地面的最大高度為(C)A.4.5mB.5.5mC.6.5mD.7.5m如圖,一名學(xué)生推鉛球,鉛球行進高度y(單位:m)與水平距離x(單位:m)之間的關(guān)系是y=-(x-10)(x+4),則鉛球推出的距離OA=___10__m.3.二次函數(shù)y=2x2-3x-c(c>0)的圖象與x軸的交點情況是(B).A.有1個交點B.有2個交點C.無交點D.無法確定4.拋物線圖象如圖所示,求解一元二次方程.(1)方程ax2+bx+c=0的根為x1=-1,x2=3;(2)方程ax2+bx+c=-3的根為x1=0,x2=2;(3)方程ax2+bx+c=-4的根為x1=x2=1.選做題:5.從地面豎直向上拋出一小球,小球的高度h(單位:m)與小球的運動時間t(單位:s)之間的關(guān)系式是h=30t-5t2.小球運動到最高點所需的時間是(B)A.2sB.3sC.4sD.5s6.利用二次函數(shù)y=2x2與一次函數(shù)y=x+2的圖象,求一元二次方程2x2=x+2的近似根.解:在同一平面直角坐標(biāo)系中分別作出函數(shù)y=2x2與y=x+2的圖象,由圖象可知,二次函數(shù)y=2x2與一次函數(shù)y=x+2的交點坐標(biāo)是(-0.8,1.2),(1.3,3.3)。所以一元二次方程2x2=x+2的近似根為x1≈1.3,x2≈-0.8.【綜合實踐類作業(yè)】7.一位運動員投擲鉛球的成績是14m,當(dāng)鉛球運行的水平距離是6m時達到最大高度4m,若鉛球運行的路線是拋物線,如圖建立平面直角坐標(biāo)系,(1)求此拋物線的解析式;(2)求鉛球出手時距地面的高度.解:(1)建立如圖所示的平面直角坐標(biāo)系,記頂點為A,與x軸交點為B點,與y軸交點為C點,由題意知拋物線的頂點A(6,4)、點B(14,0),設(shè)拋物線的解析式為y=a(x-6)2+4,將點B(14,0)代入,得:0=a(14-6)2+4解得:a=則拋物線的解析式為y=(x-6)2+4.解:當(dāng)x=0時,y=(x-6)2+4=,即點C(0,),答:鉛球出手時距地面的高度是m.作業(yè)布置【知識技能類作業(yè)】必做題1.一個球從地面豎直向上彈起時的速度為10米/秒,經(jīng)過t(秒)時球距離地面的高度h(米)適用公式h=10t-5t2,那么球彈起后又回到地面所花的時間t(秒)是(D)A.5B.10C.1D.22.以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=at2+bt(a<0).若小球在第1秒與第3秒高度相等,則下列四個時間中,小球飛行高度最高的時間是(A).A.第1.9秒B.第2.2秒C.第2.8秒D.第3.2秒選做題:3.已知二次函數(shù)y=-x2-2x+2,X...-4-3-2-1012...Y...-6-1232-1-6...(1)填寫表,并在給出的平面直角坐標(biāo)系中畫出這個二次函數(shù)的圖象.(2)根據(jù)表格結(jié)合函數(shù)圖象,直接寫出方程-x2-2x+2=0的近似解(指出在哪兩個連續(xù)整數(shù)之間即可)。解:由圖象可知,方程-x2-2x+2=0的兩個近似根分別在-3~-2之間和0~1之間.【綜合實踐類作業(yè)】4.科技進步促進了運動水平的提高.某運動員練習(xí)定點站立投籃,他利用激光跟蹤測高儀測量籃球運動中的高度,下面左圖所示拋物線的一部分是某次投籃訓(xùn)練中籃球飛行的部分軌跡,建立下面右圖所示的平面直角坐標(biāo)系,已知籃球每一次投出時的出手點D到地面的距離DO都為2.25m.當(dāng)球運行至點F處時,與出手點D的水平距離為2.5m,達到最大高度為3.5m.(1)求該拋物線的表達式.解:D到地面的距離DO都為2.25m.當(dāng)球運行至點F處時,與出手點D的水平距離為2.5m,達到最大高度為3.5m.∴D(0,2.25),F(xiàn)(2.5,3.5),設(shè)拋物線解析式為y=a(x-2.5)2+3.5,將點D(0,2.25)代入得,2.25=6.25a+3.5.解得:a=∴拋物線解析式為y=(x-2.5)2+3.5.(2)在球出手后,未達到最高點時,被防守隊員攔截下來稱為蓋帽,但球到達最高點后,處于下落過程時,防守隊員再出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院藥房的年度工作總結(jié)
- 2025北京大學(xué)黨委辦公室校長辦公室招聘考前自測高頻考點模擬試題附答案詳解(突破訓(xùn)練)
- 2025福建三明市教育局華東師范大學(xué)附屬三明中學(xué)招聘緊缺急需專業(yè)工作人員18人(省外高校專場)考前自測高頻考點模擬試題及答案詳解一套
- 2025湖南郴州桂東縣城市管理和綜合執(zhí)法局輔助執(zhí)法臨聘人員招聘考前自測高頻考點模擬試題及完整答案詳解1套
- 2025江蘇蘇州市相城金融控股(集團)有限公司人員招聘考前自測高頻考點模擬試題及答案詳解一套
- 2025廣東省江門市蓬江區(qū)教師招聘23人考前自測高頻考點模擬試題完整答案詳解
- 2025安徽蚌埠市固鎮(zhèn)縣新馬橋鎮(zhèn)選聘村級后備人才4人考前自測高頻考點模擬試題及參考答案詳解1套
- 2025甘肅平?jīng)鍪徐`臺縣第二批城鎮(zhèn)公益性崗位人員招聘114人考前自測高頻考點模擬試題及答案詳解1套
- 2025年國家統(tǒng)計局平頂山調(diào)查隊面向社會公開招聘勞務(wù)派遣人員4名模擬試卷及1套完整答案詳解
- 2025江蘇蘇州高新區(qū)通安鎮(zhèn)退管協(xié)管員招聘2人考前自測高頻考點模擬試題及答案詳解(奪冠系列)
- 海關(guān)報關(guān)操作手冊
- 《智慧運輸運營》全套教學(xué)課件
- 2024新教材高中歷史 第八單元 中華民族的抗日戰(zhàn)爭和人民解放戰(zhàn)爭 第25課 人民解放戰(zhàn)爭教學(xué)設(shè)計 部編版必修中外歷史綱要上
- 《建設(shè)項目安全設(shè)施“三同時”監(jiān)督管理辦法》培訓(xùn)課件2024
- 《統(tǒng)計分析與SPSS的應(yīng)用(第7版)》課件全套 第1-12章 SPSS統(tǒng)計分析軟件概述
- 《酒店營銷與數(shù)字化實務(wù)》 習(xí)題答案
- 高校周邊網(wǎng)吧調(diào)查報告
- IPD項目-TR6-評審要素表
- 機收甘蔗雜質(zhì)含量抽樣檢測操作規(guī)程
- 2023年成人學(xué)位英語高頻詞匯
- GB/T 11376-2020金屬及其他無機覆蓋層金屬的磷化膜
評論
0/150
提交評論